Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 73(3): 50, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349555

RESUMEN

Tumor immunotherapy is booming around the world. However, strategies to activate the immune system and alleviate the immunosuppression still need to be refined. Here, we demonstrate for the first time that low-intensity pulsed ultrasound (LIPUS, spatial average time average intensity (Isata) is 200 mW/cm2, frequency is 0.3 MHz, repetition frequency is 1 kHz, and duty cycle is 20%) triggers the immune system and further reverses the immunosuppressive state in the mouse models of breast cancer by irradiating the spleen of mice. LIPUS inhibited tumor growth and extended survival in mice with 4 T-1 tumors. Further studies had previously shown that LIPUS enhanced the activation of CD4+ and CD8+ T cells in the spleen and led to significant changes in cytokines, as well as induced upregulation of mRNA levels involved in multiple immune regulatory pathways in the spleen. In addition, LIPUS promoted tumor-infiltrating lymphocyte accumulation and CD8+ T cell activation and improved the dynamics of cytokines/chemokines in the tumor microenvironment, resulting in a reversal of the immunosuppressive state of the tumor microenvironment. These results suggest a novel approach to activate the immune response by irradiating the spleen with LIPUS.


Asunto(s)
Neoplasias , Bazo , Animales , Ratones , Linfocitos T CD8-positivos , Ondas Ultrasónicas , Terapia de Inmunosupresión , Citocinas , Inmunosupresores
2.
J Ultrasound Med ; 43(8): 1449-1460, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38654492

RESUMEN

OBJECTIVES: To investigate the effects of low-intensity pulsed ultrasound (LIPUS) on the proliferation, differentiation, and tumor necrosis factor-α (TNF-α)-induced lipolysis of 3T3-L1 cells, and to explore the feasibility of regulating the release of free fatty acids (FFA) to prevent lipotoxicity. METHODS: Different intensities (30, 60, 90, and 120 mW/cm2) of LIPUS were applied to 3T3-L1 preadipocytes for different durations (5, 10, 15, 20, 25, and 30 minutes). Appropriate parameters for subsequent experiments were selected by assessing cell viability. The effect of LIPUS on the proliferation and differentiation of 3T3-L1 cells was evaluated by microscope observation, flow cytometry, and lipid content determination. After treated with LIPUS and TNF-α (50 ng/mL), the degree of lipolysis was assessed by measuring the extracellular FFA content. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression of relevant genes. RESULTS: Different parameters of LIPUS significantly enhance the viability of 3T3-L1 cells (P < .05), with 20 minutes and 30 mW/cm2 as the most suitable settings. After LIPUS treatment, 3T3-L1 cell proliferation accelerated, apoptosis rate and G1 phase cell proportion decreased, the content of lipid droplets and TG was increased in differentiated cells, while FFA release decreased (P < .05). The expression of PCNA, PPARγ, C/EBPα, Perilipin A mRNA increased, and the expression of TNF-α, ATGL, HSL mRNA decreased (P < .05). CONCLUSIONS: LIPUS could promote the proliferation and differentiation of 3T3-L1 cells and inhibit TNF-α-induced lipolysis, indicating its potential as a therapy for mitigating lipotoxicity caused by decompensated adipocytes.


Asunto(s)
Células 3T3-L1 , Diferenciación Celular , Proliferación Celular , Ácidos Grasos no Esterificados , Ondas Ultrasónicas , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Lipólisis/efectos de la radiación , Adipocitos/efectos de la radiación , Factor de Necrosis Tumoral alfa
3.
BMJ Open Diabetes Res Care ; 12(4)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025793

RESUMEN

INTRODUCTION: Prolonged hyperglycemia in diabetes mellitus can result in the development of diabetic nephropathy (DN) and increase the susceptibility to kidney failure. Low-intensity pulsed ultrasound (LIPUS) is a non-invasive modality that has demonstrated effective tissue repair capabilities. The objective of this study was to showcase the reparative potential of LIPUS on renal injury at both animal and cellular levels, while also determining the optimal pulse length (PL). RESEARCH DESIGN AND METHODS: We established a rat model of DN, and subsequently subjected the rats' kidneys to ultrasound irradiation (PL=0.2 ms, 10 ms, 20 ms). Subsequently, we assessed the structural and functional changes in the kidneys. Additionally, we induced podocyte apoptosis and evaluated its occurrence following ultrasound irradiation. RESULTS: Following irradiation, DN rats exhibited improved mesangial expansion and basement membrane thickening. Uric acid expression increased while urinary microalbumin, podocalyxin in urine, blood urea nitrogen, and serum creatinine levels decreased (p<0.05). These results suggest that the optimal PL was 0.2 ms. Using the optimal PL further demonstrated the reparative effect of LIPUS on DN, it was found that LIPUS could reduce podococyte apoptosis and alleviate kidney injury. Metabolomics revealed differences in metabolites including octanoic acid and seven others and western blot results showed a significant decrease in key enzymes related to lipolysis (p<0.05). Additionally, after irradiating podocytes with different PLs, we observed suppressed apoptosis (p<0.05), confirming the optimal PL as 0.2 ms. CONCLUSIONS: LIPUS has been demonstrated to effectively restore renal structure and function in DN rats, with an optimal PL of 0.2 ms. The mechanism underlying the alleviation of DN by LIPUS is attributed to its ability to improve lipid metabolism disorder. These findings suggest that LIPUS may provide a novel perspective for future research in this field.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Podocitos , Animales , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/terapia , Ratas , Masculino , Diabetes Mellitus Experimental/complicaciones , Podocitos/efectos de la radiación , Podocitos/patología , Ratas Sprague-Dawley , Riñón/patología , Riñón/efectos de la radiación , Modelos Animales de Enfermedad , Ondas Ultrasónicas , Terapia por Ultrasonido/métodos
4.
Ultrasound Med Biol ; 49(7): 1602-1610, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37105771

RESUMEN

OBJECTIVE: Sepsis is a severe systemic inflammatory response caused by infection. Here, the spleen region of Sprague-Dawley (SD) rats with sepsis was irradiated with low-intensity ultrasound (LIUS) to explore the regulation of inflammation and its mechanism by LIUS. METHODS: In this study, 30 rats used for survival analysis were randomly divided into the sham-operated group (Sham, n = 10), the group in which sepsis was induced by cecal ligation and puncture (CLP, n = 10) and the group treated with LIUS immediately after CLP (LIUS, n = 10). The other 120 rats were randomly divided into the aforementioned three groups for detection at each time point. The parameters used in the LIUS group were 200 mW/cm2, 0.37 MHz, 20% duty cycle and 20 min, and no ultrasonic energy was produced in the Sham and CLP groups. Seven-day survival rate, histopathology and expression of inflammatory factors and proteins were evaluated in the three groups. RESULTS: LIUS was able to improve the survival rate of septic SD rats (p < 0.05), significantly inhibit the expression of tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), interleukin 6 (IL-6) and nuclear factor-κB p65 (NF-κB p65) (p < 0.05) and restore the ultrastructure of the spleen. CONCLUSION: Our study determined that LIUS can relieve spleen damage and alleviate severe cytokine storm to improve survival outcomes in septic SD rats, and its mechanism may be related to the inhibition of the NF-κB signaling pathway by downregulation of IL-1ß.


Asunto(s)
FN-kappa B , Sepsis , Ratas , Animales , Ratas Sprague-Dawley , FN-kappa B/metabolismo , FN-kappa B/uso terapéutico , Inflamación , Sepsis/terapia , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/uso terapéutico , Interleucina-6 , Antiinflamatorios/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA