Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(39): e202308729, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37452650

RESUMEN

Bismuth Vanadate (BiVO4 ) photoanode has been popularly investigated for promising solar water oxidation, but its intrinsic performance has been greatly retarded by the direct pyrolysis method. Here we insight the key restriction of BiVO4 prepared by metal-organic decomposition (MOD) method. It is found that the evaporation of vanadium during the pyrolysis tends to cause a substantial phase impurity, and the unexpected few tetragonal phase inhibits the charge separation evidently. Consequently, suitably excessive vanadium precursor was adopted to eliminate the phase impurity, based on which the obtained intrinsic BiVO4 photoanode could exhibit photocurrent density of 4.2 mA cm-2 at 1.23 VRHE under AM 1.5 G irradiation, as comparable to the one fabricated by the currently popular two-step electrodeposition method. Furthermore, the excellent performance can be maintained on the enlarged photoanode (25 cm2 ), demonstrating the advantage of MOD method in scalable preparation. Our work provides new insight and highlights the glorious future of MOD method for the design of scale-up efficient BiVO4 photoanode.

2.
J Am Chem Soc ; 144(6): 2747-2754, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35108010

RESUMEN

Development of water-stable metal-organic frameworks (MOFs) for promising visible-light-driven photocatalytic water splitting is highly desirable but still challenging. Here we report a novel p-type nickel-based MOF single crystal (Ni-TBAPy-SC) and its exfoliated nanobelts (Ni-TBAPy-NB) that can bear a wide range of pH environment in aqueous solution. Both experimental and theoretical results indicate a feasible electron transfer from the H4TBAPy ligand (light-harvesting center) to the Ni-O cluster node (catalytic center), on which water splitting to produce hydrogen can be efficiently driven free of cocatalyst. Compared to the single crystal, the exfoliated two-dimensional (2D) nanobelts show more efficient charge separation due to its shortened charge transfer distance and remarkably enhanced active surface areas, resulting in 164 times of promoted water reduction activity. The optimal H2 evolution rate on the nanobelt reaches 98 µmol h-1 (ca. 5 mmol h-1 g-1) showing benchmarked apparent quantum efficiency (AQE) of 8.0% at 420 nm among water-stable MOFs photocatalysts.

3.
Inorg Chem ; 60(3): 1790-1796, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33471516

RESUMEN

Inspired by the highly efficient water oxidation of Mn4CaO5 in natural photosynthesis, development of novel artificial water oxidation catalysts (WOCs) with structure and function mimicked has inspired extensive interests. A novel 3D cobalt-based MOF (GXY-L8-Co) was synthesized for promising artificial water oxidation by employing the Co4O4 quasi-cubane motifs with a similar structure as the Mn4CaO5 as the core. The GXY-L8-Co not only shows good chemical stability in common organic solvents or water for up to 10 days but also exhibits oxygen evolution performance. It has been demonstrated that the uniform distribution of Co4O4 catalytic active sites confined in the MOF framework should be responsible for the good robustness and catalytic performance.


Asunto(s)
Cobalto/química , Estructuras Metalorgánicas/química , Agua/química , Estructuras Metalorgánicas/síntesis química , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Soluciones
4.
J Phys Chem Lett ; 15(12): 3390-3403, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38501970

RESUMEN

Photoresponsive MOFs with precise and adjustable reticular structures are attractive for light conversion applications. Uncovering the photoinduced carrier dynamics lays the essential foundation for the further development and optimization of the MOF material. With the application of time-resolved spectroscopy, photophysical processes including excimer formation, energy transfer/migration, and charge transfer/separation have been widely investigated. However, the identification of distinct photophysical processes in real experimental MOF spectra still remains difficult due to the spectral and dynamic complexity of MOFs. In this Perspective, we summarize the typical spectral features of these photophysical processes and the related analysis methods for dynamic studies performed by time-resolved photoluminescence (TR-PL) and transient absorption (TA) spectroscopy. Based on the recent understanding of excited-state properties of photoresponsive MOFs and the discussion of challenges and future outlooks, this Perspective aims to provide convenience for MOF kinetic analysis and contribute to the further development of photoresponsive MOF material.

5.
J Phys Chem Lett ; 11(22): 9535-9542, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33115233

RESUMEN

Lead-free double perovskites have attracted noteworthy attention due to their compositional flexibility and electronic diversity. In this study, we hydrothermally grow a new class of Cs2AgxNa1-xFeCl6 (0 ≤ x ≤ 1) perovskite single crystals with high thermal stability. The substitution of B-site cation allows to regulate the crystallographic and band structure, which gives rise to enlarged band absorbance close to the near-infrared region (∼800 nm) via composition engineering. Ultrafast transient absorption spectroscopy (TAS) certifies that the decay time of excited-state absorption is 5.02 and 2450 ps in the case of Cs2NaFeCl6 and Cs2AgFeCl6, respectively. The corresponding charge carrier diffusion length accordingly enhances from 3.7 to 311 nm by means of increasing Ag dopant concentration. Structurally, the primitive cell shrinks due to the partial replacement of [NaCl6]5- octahedra by [AgCl6]5- octahedra. It is proved theoretically as well as experimentally that the introduction of Ag species can effectively enhance the electron mobility (from 1.06 to 15.3 cm2 V-1 s-1) by ∼15 times through realizing stronger orbital coupling of the conductive ions, which enables such a novel double perovskite to be a potential candidate for the optoelectronic and photovoltaic applications.

6.
Adv Mater ; 30(44): e1803401, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30295957

RESUMEN

The development of new metal-organic frameworks (MOFs) with dual functions of both water reduction and oxidation under visible-light irradiation is highly desirable for promising solar water splitting, but is not yet reported. Herein, a cadmium-based MOF (denoted as "Cd-TBAPy") single crystal with a 2D layered framework by employing 1,3,6,8-tetrakis(p-benzoic acid)pyrene (H4 TBAPy) as an organic linker is reported, which exhibits good visible-light absorption with edge of ≈600 nm. The Mott-Schottky (M-S) measurement and UV-vis analysis integrally reveal that the Cd-TBAPy is an n-type semiconductor with a bandgap of ≈2.15 eV whose conduction and valence band are estimated to be -0.05 and 2.10 eV, respectively. Together with loading of Pt or CoPi cocatalyst, the Cd-TBAPy is active for both water reduction and oxidation in the presence of scavengers under visible-light irradiation. Especially, the optimized apparent quantum efficiency for O2 evolution reaches 5.6% at 420 nm, much higher than that of previous MOF-based photocatalysts reported so far. This is thought to be the first MOF that functions as a photocatalyst for both water reduction and oxidation under visible light, demonstrating the intriguing future of MOF materials in solar-to-chemical energy conversion.

7.
Dalton Trans ; 46(32): 10707-10713, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28573277

RESUMEN

Barium tantalum oxynitride (BaTaO2N) with an absorption edge of ca. 660 nm is one of the most promising photocatalysts for solar water splitting, and is usually synthesized by nitriding a mixture of Ba and Ta-containing compounds with a Ba/Ta molar ratio of unity under ammonia flow at high temperature, usually causing a high density of defect sites. Herein, we introduce a novel synthesis method for BaTaO2N (BTON) by employing Ba-rich LiBa4Ta3O12, prepared by a flux method, as a precursor of nitridation. As a comparison, BaTaOx was prepared by conventional solid state reaction and used as the precursor. The as-nitrided samples were correspondingly denoted as BTON-Flux and BTON-SSR. It was found that well-crystallized BTON oxynitride can be similarly obtained by both methods, but the BTON-Flux sample exhibits significantly decreased defect density and enhanced surface area relative to the BTON-SSR sample. As a result of their structural differences, the photocatalytic water splitting performance of the BTON-Flux sample, regardless of the H2-evolving half reaction in the presence of methanol or Z-scheme overall water splitting, is much better than that of BTON-SSR. This study may open up a novel strategy for preparing oxynitride photocatalyst with decreased defect density for the promotion of solar water splitting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA