Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Plant Cell ; 36(7): 2607-2628, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38537937

RESUMEN

Cold injury is a major environmental stress affecting the growth and yield of crops. Brassinosteroids (BRs) and salicylic acid (SA) play important roles in plant cold tolerance. However, whether or how BR signaling interacts with the SA signaling pathway in response to cold stress is still unknown. Here, we identified an SA methyltransferase, TaSAMT1 that converts SA to methyl SA (MeSA) and confers freezing tolerance in wheat (Triticum aestivum). TaSAMT1 overexpression greatly enhanced wheat freezing tolerance, with plants accumulating more MeSA and less SA, whereas Tasamt1 knockout lines were sensitive to freezing stress and accumulated less MeSA and more SA. Spraying plants with MeSA conferred freezing tolerance to Tasamt1 mutants, but SA did not. We revealed that BRASSINAZOLE-RESISTANT 1 (TaBZR1) directly binds to the TaSAMT1 promoter and induces its transcription. Moreover, TaBZR1 interacts with the histone acetyltransferase TaHAG1, which potentiates TaSAMT1 expression via increased histone acetylation and modulates the SA pathway during freezing stress. Additionally, overexpression of TaBZR1 or TaHAG1 altered TaSAMT1 expression and improved freezing tolerance. Our results demonstrate a key regulatory node that connects the BR and SA pathways in the plant cold stress response. The regulatory factors or genes identified could be effective targets for the genetic improvement of freezing tolerance in crops.


Asunto(s)
Brasinoesteroides , Congelación , Regulación de la Expresión Génica de las Plantas , Metiltransferasas , Proteínas de Plantas , Ácido Salicílico , Transducción de Señal , Triticum , Triticum/genética , Triticum/fisiología , Triticum/metabolismo , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética
2.
Plant Physiol ; 193(1): 578-594, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37249052

RESUMEN

Intracellular gene transfers (IGTs) between the nucleus and organelles, including plastids and mitochondria, constantly reshape the nuclear genome during evolution. Despite the substantial contribution of IGTs to genome variation, the dynamic trajectories of IGTs at the pangenomic level remain elusive. Here, we developed an approach, IGTminer, that maps the evolutionary trajectories of IGTs using collinearity and gene reannotation across multiple genome assemblies. We applied IGTminer to create a nuclear organellar gene (NOG) map across 67 genomes covering 15 Poaceae species, including important crops. The resulting NOGs were verified by experiments and sequencing data sets. Our analysis revealed that most NOGs were recently transferred and lineage specific and that Triticeae species tended to have more NOGs than other Poaceae species. Wheat (Triticum aestivum) had a higher retention rate of NOGs than maize (Zea mays) and rice (Oryza sativa), and the retained NOGs were likely involved in photosynthesis and translation pathways. Large numbers of NOG clusters were aggregated in hexaploid wheat during 2 rounds of polyploidization, contributing to the genetic diversity among modern wheat accessions. We implemented an interactive web server to facilitate the exploration of NOGs in Poaceae. In summary, this study provides resources and insights into the roles of IGTs in shaping interspecies and intraspecies genome variation and driving plant genome evolution.


Asunto(s)
Oryza , Poaceae , Poaceae/genética , Triticum/genética , Genoma de Planta/genética , Oryza/genética , Zea mays/genética , Evolución Molecular
3.
Theor Appl Genet ; 137(2): 43, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38321245

RESUMEN

KEY MESSAGE: A locus conferring Fusarium crown rot resistance was identified on chromosome arm 3DL through genome wide association study and further validated in two recombinant inbred lines populations. Fusarium crown rot (FCR) is a severe soil borne disease in many wheat growing regions of the world. In this study, we attempted to detect loci conferring FCR resistance through a new seedling inoculation assay. A total of 223 wheat accessions from different geography origins were used to assemble an association panel for GWAS analysis. Four genotypes including Heng 4332, Luwanmai, Pingan 998 and Yannong 24 showed stable resistance to FCR. A total of 54 SNPs associated with FCR resistance were identified. Among the 10 putative QTLs represented by these SNPs, seven QTLs on chromosome 2B, 3A, 3D, 4A, 7A and 7B were novel and were consistently detected in at least two of the three trials conducted. Qfcr.cau.3D-3, which was targeted by 38 SNPs clustered within a genomic region of approximately 5.57 Mb (609.12-614.69 Mb) on chromosome arm 3DL, was consistently detected in all the three trials. The effects of Qfcr.cau.3D-3 were further validated in two recombinant inbred line populations. The presence of this locus reduced FCR severity up to 21.55%. Interestingly, the collinear positions of sequences containing the four SNPs associated with two FCR loci (Qfcr.cau.3A and Qfcr.cau.3B) were within the regions of Qfcr.cau.3D-3, suggesting that genes underlying these three loci may be homologous. Our results provide useful information for improving FCR resistance in wheat.


Asunto(s)
Fusarium , Estudio de Asociación del Genoma Completo , Triticum/genética , Resistencia a la Enfermedad/genética , Sitios de Carácter Cuantitativo , Enfermedades de las Plantas/genética
4.
Theor Appl Genet ; 137(2): 49, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349579

RESUMEN

KEY MESSAGE: A novel QTL on chromosome 2A for Fusarium crown rot resistance was identified and validated in wheat. Fusarium crown rot (FCR) is a fungal disease that causes significant yield losses in many cereal growing regions in the world. In this study, genetic analysis was conducted for a wheat EMS mutant C549 which showed stable resistance to FCR at seedling stage. A total of 10 QTL were detected on chromosomes 1A, 2A, 3B, 4A, 6B, and 7B using a population of 138 F7 recombinant inbred lines (RILs) derived from a cross between C549 and a Chinese germplasm 3642. A novel locus Qfcr.cau-2A, which accounted for up to 24.42% of the phenotypic variation with a LOD value of 12.78, was consistently detected across all six trials conducted. Furthermore, possible effects of heading date (HD) and plant height on FCR severity were also investigated in the mapping population. While plant height had no effects on FCR resistance, a weak and negative association between FCR resistance and HD was observed. A QTL for HD (Qhd.cau-2A.2) was coincident with Qfcr.cau-2A. Conditional QTL mapping indicated that although Qfcr.cau-2A and Qhd.cau-2A.2 had significant interactions, Qfcr.cau-2A remained significant after the effects of HD was removed. It is unlikely that genes underlying these two loci are same. Nevertheless, the stable expression of Qfcr.cau-2A in the validation population of 148 F7 RILs developed between C549 and its wild parent Chuannong 16 demonstrated the potential value of this locus in FCR resistance breeding programs.


Asunto(s)
Fusarium , Triticum/genética , Fitomejoramiento , Mapeo Cromosómico , Cromosomas
5.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38928313

RESUMEN

Wheat powdery mildew is an important fungal disease that seriously jeopardizes wheat production, which poses a serious threat to food safety. SJ106 is a high-quality, disease-resistant spring wheat variety; this disease resistance is derived from Wheat-wheatgrass 33. In this study, the powdery mildew resistance genes in SJ106 were located at the end of chromosome 6DS, a new disease resistance locus tentatively named PmSJ106 locus. This interval was composed of a nucleotide-binding leucine-rich repeat (NLR) gene cluster containing 19 NLR genes. Five NLRs were tandem duplicated genes, and one of them (a coiled coil domain-nucleotide binding site-leucine-rich repeat (CC-NBS-LRR; CNL) type gene, TaRGA5-like) expressed 69-836-fold in SJ106 compared with the susceptible control. The genome DNA and cDNA sequences of TaRGA5-like were amplified from SJ106, which contain several nucleotide polymorphisms in LRR regions compared with susceptible individuals and Chinese Spring. Overexpression of TaRGA5-like significantly increased resistance to powdery mildew in susceptible receptor wheat Jinqiang5. However, Virus induced gene silence (VIGS) of TaRGA5-like resulted in only a small decrease of SJ106 in disease resistance, presumably compensated by other NLR duplicated genes. The results suggested that TaRGA5-like confers partial powdery mildew resistance in SJ106. As a member of the PmSJ106 locus, TaRGA5-like functioned together with other NLR duplicated genes to improve wheat resistance to powdery mildew. Wheat variety SJ106 would become a novel and potentially valuable germplasm for powdery mildew resistance.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Proteínas NLR , Enfermedades de las Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas NLR/genética , Ascomicetos/patogenicidad , Mapeo Cromosómico , Genes de Plantas , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Cromosomas de las Plantas/genética
6.
Plant Cell Environ ; 46(6): 1935-1945, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36890722

RESUMEN

Wheat (Triticum aestivum L.) is a critical food crop feeding the world, but pathogens threaten its production. Wheat Heat Shock Protein 90.2 (HSP90.2) is a pathogen-inducible molecular chaperone folding nascent preproteins. Here, we used wheat HSP90.2 to isolate clients regulated at the posttranslational level. Tetraploid wheat hsp90.2 knockout mutant was susceptible to powdery mildew, while the HSP90.2 overexpression line was resistant, suggesting that HSP90.2 was essential for wheat resistance against powdery mildew. We next isolated 1500 clients of HSP90.2, which contained a wide variety of clients with different biological classifications. We utilized 2Q2, a nucleotide-binding leucine repeat-rich protein, as a model to investigate the potential of HSP90.2 interactome in fungal resistance. The transgenic line co-suppressing 2Q2 was more susceptible to powdery mildew, suggesting 2Q2 as a novel Pm-resistant gene. The 2Q2 protein resided in chloroplasts, and HSP90.2 played a critical role in the accumulation of 2Q2 in thylakoids. Our data provided over 1500 HSP90.2 clients with a potential regulation at the protein folding process and contributed a nontypical approach to isolate pathogenesis-related proteins.


Asunto(s)
Ascomicetos , Triticum , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología
7.
New Phytol ; 236(2): 590-607, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35832009

RESUMEN

Plants have evolved a two-branched innate immune system to detect and cope with pathogen attack, which are initiated by cell-surface and intracellular immune receptors leading to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. A core transducer including PAD4-EDS1 node is proposed as the convergence point for a two-tiered immune system in conferring pathogen immunity. However, the transcriptional regulatory mechanisms controlling expression of these key transducers remain largely unknown. Here, we identified histone acetyltransferase TaHAG1 as a positive regulator of powdery mildew resistance in wheat. TaHAG1 regulates expression of key transducer gene TaPAD4 and promotes SA and reactive oxygen species accumulation to accomplish resistance to Bgt infection. Moreover, overexpression and CRISPR-mediated knockout of TaPAD4 validate its role in wheat powdery mildew resistance. Furthermore, TaHAG1 physically interacts with TaPLATZ5, a plant-specific zinc-binding protein. TaPLATZ5 directly binds to promoter of TaPAD4 and together with TaHAG1 to potentiate the expression of TaPAD4 by increasing the levels of H3 acetylation. Our study revealed a key transcription regulatory node in which TaHAG1 acts as an epigenetic modulator and interacts with TaPLATZ5 that confers powdery mildew resistance in wheat through activating a convergence point gene between PTI and ETI, which could be effective for genetic improvement of disease resistance in wheat and other crops.


Asunto(s)
Ascomicetos , Triticum , Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Histona Acetiltransferasas/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triticum/metabolismo
8.
J Exp Bot ; 73(19): 6600-6614, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35781562

RESUMEN

Heat stress substantially reduces the yield potential of wheat (Triticum aestivum L.), one of the most widely cultivated staple crops, and greatly threatens global food security in the context of global warming. However, few studies have explored the heat stress tolerance (HST)-related genetic resources in wheat. Here, we identified and fine-mapped a wheat HST locus, TaHST2, which is indispensable for HST in both the vegetative and reproductive stages of the wheat life cycle. The studied pair of near isogenic lines (NILs) exhibited diverse morphologies under heat stress, based on which we mapped TaHST2 to a 485 kb interval on chromosome arm 4DS. Under heat stress, TaHST2 confers a superior conversion rate from soluble sugars to starch in wheat grains, resulting in faster grain filling and a higher yield potential. A further exploration of genetic resources indicated that TaHST2 underwent strong artificial selection during wheat domestication, suggesting it is an essential locus for basal HST in wheat. Our findings provide deeper insights into the genetic basis of wheat HST and might be useful for global efforts to breed heat-stress-tolerant cultivars.


Asunto(s)
Termotolerancia , Triticum , Triticum/genética , Fitomejoramiento , Respuesta al Choque Térmico/genética , Termotolerancia/genética , Grano Comestible/genética
9.
Plant Dis ; 106(4): 1122-1127, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35341329

RESUMEN

Fusarium crown rot (FCR), caused by Fusarium species, is a serious soilborne fungal disease in many wheat growing regions in the world. A reliable FCR assessment method is essential for germplasm screening and host resistance studies. Here, we report a new assay in which we inoculated wheat seedlings grown in a glasshouse for FCR by injecting spore suspensions into the seedling stems. The effects of inoculum concentration and injection time points on disease severity were investigated. Of different treatments, the injection of 107 macroconidia/ml suspension at one leaf and one heart stage gave best results. A collection of 92 emmer-derived hexaploid bread wheats, 43 barley germplasms, and four wheat genotypes with known resistance levels to FCR was used to validate this new method. Repeatability of the two trials in the validation experiments was high (r = 0.97, P < 0.01). Two emmer-derived hexaploid bread wheat and three Chinese barley germplasms showed consistent resistance to FCR in multiple rounds of selection. The short timeframe of this assay for phenotypic screening makes it a valuable tool to eliminate germplasms with undesirable susceptibility to FCR at seedling stage before costly field assays.


Asunto(s)
Fusarium , Hordeum , Resistencia a la Enfermedad/genética , Genotipo , Hordeum/genética , Hordeum/microbiología , Enfermedades de las Plantas/microbiología , Plantones/genética , Triticum/genética , Triticum/microbiología
10.
Theor Appl Genet ; 134(8): 2469-2479, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33987716

RESUMEN

KEY MESSAGE: Powdery mildew resistance gene MlIW39, originated from wild emmer wheat accession IW39, was mapped to a 460.3 kb genomic interval on wheat chromosome arm 2BS. Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is destructive disease and a significant threat to wheat production globally. The most effective way to control this disease is genetic resistance. However, when resistance genes become widely deployed in agriculture, their effectiveness is compromised by virulent variants that were previously minor components of the pathogen population or that arise from mutation. This necessitates continual search for new sources of resistance in both wheat and its near relatives. In this study, we produced a common wheat line 8D49 (87-1/IW39//2*87-1), which has all-stage immunity to Bgt isolate E09 and many other Chinese Bgt isolates, by transferring powdery mildew resistance from Israeli wild emmer wheat (WEW) accession IW39 to the susceptible common wheat line 87-1. Genetic analysis indicated that the powdery mildew resistance in 8D49 was controlled by a single dominant gene, temporarily designated MlIW39. Genetic linkage analyses with molecular markers showed that MlIW39 was located in a 0.7 cm genetic region between markers QB-3-16 and 7Seq546 on the short arm of chromosome 2B. Fine mapping using three large F2 populations delimited MlIW39 to a physical interval of approximately 460.3 kb region in the WEW reference genome (Zavitan v1.0) that contained six annotated protein-coding genes, four of which had gene structures similar to known disease resistance genes. This provides a foundation for map-based cloning of MlIW39. Markers 7Seq622 and 7Seq727 co-segregating with MlIW39 can be utilized for marker-assisted selection in further genetic studies and wheat breeding.


Asunto(s)
Ascomicetos/fisiología , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Triticum/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Triticum/crecimiento & desarrollo , Triticum/microbiología
11.
Theor Appl Genet ; 134(1): 399-418, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33155062

RESUMEN

KEY MESSAGE: We identified genomic regions associated with six quality-related traits in wheat under two sowing conditions and analyzed the effects of multienvironment-significant SNPs on the stability of these traits. Grain quality affects the nutritional and commercial value of wheat (Triticum aestivum L.) and is a critical factor influencing consumer preferences for specific wheat varieties. Climate change is predicted to increase environmental stress and thereby reduce wheat quality. Here, we performed a genotyping assay involving the use of the wheat 90 K array in a genome-wide association study of six quality-related traits in 486 wheat accessions under two sowing conditions (normal and late sowing) over 4 years. We identified 64 stable quantitative trait loci (QTL), including 10 for grain protein content, 9 for wet gluten content, 4 for grain starch content, 14 for water absorption, 15 for dough stability time and 12 for grain hardness in wheat under two sowing conditions. These QTL harbored 175 single nucleotide polymorphisms (SNPs), explaining approximately 3-13% of the phenotypic variation in multiple environments. Some QTL on chromosomes 6A and 5D were associated with multiple traits simultaneously, and two (QNGPC.cau-6A, QNGH.cau-5D) harbored known genes, such as NAM-A1 for grain protein content and Pinb for grain hardness, whereas other QTL could facilitate gene discovery. Forty-three SNPs that were detected under late or both normal and late sowing conditions appear to be related to phenotypic stability. The effects of these SNP alleles were confirmed in the association population. The results of this study will be useful for further dissecting the genetic basis of quality-related traits in wheat and developing new wheat cultivars with desirable alleles to improve the stability of grain quality.


Asunto(s)
Sitios de Carácter Cuantitativo , Semillas/química , Triticum/genética , Alelos , Grano Comestible/genética , Estudios de Asociación Genética , Genotipo , Glútenes , Fenotipo , Polimorfismo de Nucleótido Simple , Almidón , Tiempo (Meteorología)
12.
Zhongguo Zhong Yao Za Zhi ; 46(18): 4865-4874, 2021 Sep.
Artículo en Zh | MEDLINE | ID: mdl-34581098

RESUMEN

In ancient times, the original plants of Citri Exocarpium Rubrum and Citri Grandis Exocarpium had experienced succession and change, including tangerine(Citrus reticulata), pomelo(C. grandis), and Huazhou pomelo(C. grandis 'Tomentosa'), a specific cultivar of C. grandis produced in Huazhou, Guangdong. Before the Qing Dynasty, tangerine was the main original plant, while Huazhou pomelo came to the fore in the Qing Dynasty. In the 1950 s and 1960 s, the producing area of Huazhou pomelo was destroyed, and thus it had to be supplemented with pomelo. From then on, C. grandis 'Tomentosa' and C. grandis were both listed as the original plants of Citri Grandis Exocarpium in the Chinese Pharmacopoeia. This paper reviewed the historical evolution of the collection, processing, and efficacy of Citri Exocarpium Rubrum and Citri Grandis Exocarpium. The research showed that:(1)The harvest time of the original plants of Citri Grandis Exocarpium and Citri Grandis Exocarpium had changed from maturity to immaturity. The collection and processing of Citri Exocarpium Rubrum was first recorded in the Illustrated Classics of Materia Medica in the Song Dynasty. During the Ming and Qing Dynasties, the mesocarp of Citri Exocarpium Rubrum needed to be removed completely, and Citri Grandis Exocarpium from C. grandis 'Tomentosa' was processed into different specifications such as seven-piece, five-piece, and single piece. Furthermore, processed young fruits of Huazhou pomelo appeared.(2)Citri Exocarpium Rubrum and Citri Grandis Exocarpium were processed with carp skin for the first time in the Master Lei's Discourse on Medicinal Processing. It was suggested that carp skin might be helpful for eliminating bones stuck in throat. During the Song, Jin, and Yuan Dynasties, some other processing methods such as ba-king, stir-frying, and salt-processing appeared. Honey, soil, ginger juice, and alum were firstly used as adjuvants for the processing in the Ming and Qing Dynasties. Citri Exocarpium Rubrum was mainly prepared with salt in order to improve the effect of lowering Qi, while it was unnecessary for Citri Grandis Exocarpium from C. grandis 'Tomentosa' because of its obvious effect of lowering Qi and eliminating phlegm. The stir-frying and honey-frying methods helped reduce the strong effect of Citri Grandis Exocarpium from C. grandis 'Tomentosa'.(3)According to the application of Citri Exocarpium Rubrum and Citri Grandis Exocarpium in history, their medicinal use began in Han and Tang Dynasties, developed in Song, Jin, and Yuan Dynasties, and matured in Ming and Qing Dynasties. Citri Grandis Exocarpium from C. grandis 'Tomentosa' was originally applied in Ming and Qing Dynasties, and it still plays an important in role treating COVID-19 nowadays. Moreover, Citri Grandis Exocarpium from C. grandis had cold medicinal property, while Citri Grandis Exocarpium from C. grandis 'Tomentosa' had warm medicinal property, and thus they should not be treated the same. At present, Huazhou pomelo has a certain production scale. Therefore, it is recommended that in the next edition of Chinese Pharmacopoeia, only C. grandis 'Tomentosa' should be included as the original plant of Citri Grandis Exocarpium, and C. grandis should be deleted. The results are conducive to the further development and utilization of Citri Exocarpium Rubrum and Citri Grandis Exocarpium, and support the rational use of Citri Grandis Exocarpium and its processed products.


Asunto(s)
COVID-19 , Citrus , Medicamentos Herbarios Chinos , Materia Medica , Humanos , SARS-CoV-2
13.
Theor Appl Genet ; 133(7): 2063-2073, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32172298

RESUMEN

KEY MESSAGE: Genome-wide association study (GWAS) on 358 Chinese wheat germplasms and validation in a biparental population identified a novel significant genomic region on 5DL for FCR resistance. Fusarium crown rot (FCR) is a chronic and severe disease in many dryland wheat-producing areas worldwide. In the last few years, the incidence and severity of FCR progressively increased in China, and the disease has currently become a new threat to local wheat crops. Here, we report a genome-wide association study (GWAS) on a set of 358 Chinese germplasms with the wheat 55 K SNP array. A total of 104 SNPs on chromosomes 1BS, 1DS, 2AL, 5AL, 5DS, 5DL, 6BS and 7BL were significantly associated with seedling resistance to FCR in the association panel. Of these SNPs, a novel 13.78 Mb region targeted by five SNPs on chromosome arm 5DL was continually detected in all three trials. The effects of this region on FCR resistance was confirmed in biparental population. qRT-PCR showed that within this 5DL region, several genes encoding TIR-NBS-LRR proteins and proteins related to mycotoxins deoxynivalenol (DON) detoxification increased rapidly in the disease-resistant variety 04 Zhong 36 than the susceptible variety Xinmai 26 after inoculation. Our study provides new insights into gene discovery and creation of new cultivars with desirable alleles for improving FCR resistance in wheat.


Asunto(s)
Resistencia a la Enfermedad/genética , Fusarium/patogenicidad , Genoma Fúngico , Enfermedades de las Plantas/genética , Triticum/genética , Alelos , China , Mapeo Cromosómico , Cromosomas de las Plantas , Cruzamientos Genéticos , Estudios de Asociación Genética , Marcadores Genéticos , Genotipo , Haplotipos , Fenotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Tricotecenos , Triticum/microbiología
14.
Theor Appl Genet ; 133(7): 2259-2269, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32347319

RESUMEN

KEY MESSAGE: An InDel marker closely linked with a major and stable quantitative trait locus (QTL) on chromosome 4BS, QSnpa.cau-4B, controlling spike number per unit area will benefit wheat yield improvement. Spike number per unit area (SNPA) is an essential yield-related trait, and analyzing its genetic basis is important for cultivar improvement in wheat (Triticum aestivum L.). In this study, we used the F2 population derived from a cross between two wheat accessions displaying significant differences in SNPA to perform quantitative trait locus (QTL) analysis. Through bulked segregant analysis, a major and stable QTL that explained 18.11-82.11% of the phenotypic variation was identified on chromosome 4BS. The QTL interval was validated using F4:5 and F6:7 families and narrowed it to a 24.91-38.36 Mb region of chromosome 4BS according to the 'Chinese Spring' reference genome sequence. In this region, variations in 16 genes caused amino acid changes and three genes were present in only one parent. Among these, we annotated a gene orthologous to TB1 in maize (Zea mays), namely TraesCS4B01G042700, which carried a 44-bp deletion in its promoter in the higher-SNPA parent. An InDel marker based on the insertion/deletion polymorphism was designed and used to diagnose the allelic distribution within a natural population. The frequency of the 44-bp deletion allele associated with higher SNPA was relatively low (13.24%), implying that this favorable allele has not been widely utilized and could be valuable for wheat yield improvement. In summary, we identified a major and stable QTL for SNPA and developed a diagnostic marker for the more-spiked trait, which will be beneficial for molecular-assisted breeding in wheat.


Asunto(s)
Cromosomas de las Plantas , Genes de Plantas , Sitios de Carácter Cuantitativo , Triticum/genética , Alelos , Mapeo Cromosómico , Cruzamientos Genéticos , Ligamiento Genético , Marcadores Genéticos , Fenotipo , Fitomejoramiento
15.
Int J Mol Sci ; 21(9)2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380646

RESUMEN

Starch and prolamin composition and content are important indexes for determining the processing and nutritional quality of wheat (Triticum aestivum L.) grains. Several transcription factors (TFs) regulate gene expression during starch and protein biosynthesis in wheat. Storage protein activator (TaSPA), a member of the basic leucine zipper (bZIP) family, has been reported to activate glutenin genes and is correlated to starch synthesis related genes. In this study, we generated TaSPA-B overexpressing (OE) transgenic wheat lines. Compared with wild-type (WT) plants, the starch content was slightly reduced and starch granules exhibited a more polarized distribution in the TaSPA-B OE lines. Moreover, glutenin and ω- gliadin contents were significantly reduced, with lower expression levels of related genes (e.g., By15, Dx2, and ω-1,2 gliadin gene). RNA-seq analysis identified 2023 differentially expressed genes (DEGs). The low expression of some DEGs (e.g., SUSase, ADPase, Pho1, Waxy, SBE, SSI, and SS II a) might explain the reduction of starch contents. Some TFs involved in glutenin and starch synthesis might be regulated by TaSPA-B, for example, TaPBF was reduced in TaSPA-B OE-3 lines. In addition, dual-luciferase reporter assay indicated that both TaSPA-B and TaPBF could transactivate the promoter of ω-1,2 gliadin gene. These results suggest that TaSPA-B regulates a complex gene network and plays an important role in starch and protein biosynthesis in wheat.


Asunto(s)
Grano Comestible/genética , Grano Comestible/metabolismo , Expresión Génica , Proteínas de Plantas/genética , Almidón/metabolismo , Triticum/genética , Grano Comestible/química , Perfilación de la Expresión Génica , Ontología de Genes , Anotación de Secuencia Molecular , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Semillas/metabolismo , Semillas/ultraestructura , Almidón/ultraestructura , Triticum/química , Triticum/metabolismo
16.
Int J Mol Sci ; 21(2)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968554

RESUMEN

Our previous study indicated that glycerol application induced resistance to powdery mildew (Bgt) in wheat by regulating two important signal molecules, glycerol-3-phosphate (G3P) and oleic acid (OA18:1). Transcriptome analysis of wheat leaves treated by glycerol and inoculated with Bgt was performed to identify the activated immune response pathways. We identified a set of differentially expressed transcripts (e.g., TaGLI1, TaACT1, and TaSSI2) involved in glycerol and fatty acid metabolism that were upregulated in response to Bgt infection and might contribute to G3P and OA18:1 accumulation. Gene Ontology (GO) enrichment analysis revealed GO terms induced by glycerol, such as response to jasmonic acid (JA), defense response to bacterium, lipid oxidation, and growth. In addition, glycerol application induced genes (e.g., LOX, AOS, and OPRs) involved in the metabolism pathway of linolenic and alpha-linolenic acid, which are precursor molecules of JA biosynthesis. Glycerol induced JA and salicylic acid (SA) levels, while glycerol reduced the auxin (IAA) level in wheat. Glycerol treatment also induced pathogenesis related (PR) genes, including PR-1, PR-3, PR-10, callose synthase, PRMS, RPM1, peroxidase, HSP70, HSP90, etc. These results indicate that glycerol treatment regulates fatty acid metabolism and hormones cross-talk and induces the expression of PR genes that together contribute to Bgt resistance in wheat.


Asunto(s)
Ascomicetos/fisiología , Resistencia a la Enfermedad , Ácidos Grasos/metabolismo , Glicerol/farmacología , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Triticum/inmunología , Ciclopentanos/metabolismo , Perfilación de la Expresión Génica , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Triticum/genética , Triticum/microbiología
17.
Plant Cell Physiol ; 60(6): 1342-1353, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30994893

RESUMEN

Spike brittleness represents an important domestication trait in crops. Although the brittle rachis of wild wheat was cloned, however, the molecular mechanism underlying spike brittleness is yet to be elucidated. Here, we identified a single dominant brittle rachis gene Br-Ab on chromosome arm 3AbS using an F2 population of diploid wheat and designated Btr1-Ab. Sequence analysis of the Btr1-A gene in 40 diploid wheat accessions, 80 tetraploid wheat accessions and 38 hexaploid wheat accessions showed that two independent mutations (Ala119Thr for diploid and Gly97* for polyploids) in the Btr1-A coding region resulting in the nonbrittle rachis allele. Overexpression of Btr1-Ab in nonbrittle hexaploid wheat led to brittle rachis in transgenic plants. RNA-Seq analysis revealed that Btr1-A represses the expression of cell wall biosynthesis genes during wheat rachis development. In addition, we found that Btr1-A can modify spike morphology and reduce threshability, grain size and thousand grain weight in transgenic wheat. These results demonstrated that Btr1-A reduces cell wall synthesis in rachis nodes, resulting in natural spikelet shattering, and that the transition from Btr1-A to btr1-A during wheat domestication had profound effects on evolution of spike morphology and yield-related traits.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Proteínas de Plantas/fisiología , Triticum/crecimiento & desarrollo , Alelos , Pared Celular/metabolismo , Diploidia , Grano Comestible/anatomía & histología , Grano Comestible/ultraestructura , Genes de Plantas/genética , Genes de Plantas/fisiología , Microscopía Electrónica de Rastreo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Poliploidía , Carácter Cuantitativo Heredable , Análisis de Secuencia de ADN , Tetraploidía , Triticum/anatomía & histología , Triticum/genética , Triticum/ultraestructura
18.
Theor Appl Genet ; 132(9): 2509-2523, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31139853

RESUMEN

KEY MESSAGE: Genetic diversity, population structure, LD decay, and selective sweeps in 687 wheat accessions were analyzed, providing relevant guidelines to facilitate the use of the germplasm in wheat breeding. Common wheat (Triticum aestivum L.) is one of the most widely grown crops in the world. Landraces were subjected to strong human-mediated selection in developing high-yielding, good quality, and widely adapted cultivars. To investigate the genome-wide patterns of allelic variation, population structure and patterns of selective sweeps during modern wheat breeding, we tested 687 wheat accessions, including landraces (148) and cultivars (539) mainly from China and Pakistan in a wheat 90 K single nucleotide polymorphism array. Population structure analysis revealed that cultivars and landraces from China and Pakistan comprised three relatively independent genetic clusters. Cultivars displayed lower nucleotide diversity and a wider average LD decay across whole genome, indicating allelic erosion and a diversity bottleneck due to the modern breeding. Analysis of genetic differentiation between landraces and cultivars from China and Pakistan identified allelic variants subjected to selection during modern breeding. In total, 477 unique genome regions showed signatures of selection, where 109 were identified in both China and Pakistan germplasm. The majority of genomic regions were located in the B genome (225), followed by the A genome (175), and only 77 regions were located in the D genome. EigenGWAS was further used to identify key selection loci in modern wheat cultivars from China and Pakistan by comparing with global winter wheat and spring wheat diversity panels, respectively. A few known functional genes or loci found within these genome regions corresponded to known phenotypes for disease resistance, vernalization, quality, adaptability and yield-related traits. This study uncovered molecular footprints of modern wheat breeding and explained the genetic basis of polygenic adaptation in wheat. The results will be useful for understanding targets of modern wheat breeding, and in devising future breeding strategies to target beneficial alleles currently not pursued.


Asunto(s)
Productos Agrícolas/genética , Genoma de Planta , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Selección Genética , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Productos Agrícolas/crecimiento & desarrollo , Genotipo , Desequilibrio de Ligamiento , Fenotipo , Triticum/crecimiento & desarrollo
19.
Planta Med ; 85(4): 335-339, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30690692

RESUMEN

Two new α-tetralonyl glucosides, (4S)-4,5,8-trihydroxy-α-tetralone-5-O-ß-D-glucopyranosyl(1 → 6)-ß-D-glucopyranoside (1: ) and (4S)-4,8-dihydroxy-α-tetralone-4-O-ß-D-glucopyranosyl(1 → 6)-ß-D-glucopyranoside (2: ), together with eight known compounds (3:  - 10: ) were isolated from the green walnut husks of Juglans mandshurica. The structural characterization of all compounds was performed by spectroscopic analyses, including 1D and 2D NMR and HR-ESI-MS experiments. The isolated compounds were assayed for their cytotoxicity against two human cancer cell lines, A549 and HeLa. Four compounds (7:  - 10: ) exhibited inhibitory effects against two human cancer cell lines with GI50 values between 1.3 and 5.8 µM.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Glucósidos/farmacología , Juglans/química , Células A549/efectos de los fármacos , Antineoplásicos Fitogénicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Glucósidos/química , Glucósidos/aislamiento & purificación , Células HeLa/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética
20.
BMC Plant Biol ; 17(1): 220, 2017 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-29169344

RESUMEN

BACKGROUND: Black point is a serious threat to wheat production and can be managed by host resistance. Marker-assisted selection (MAS) has the potential to accelerate genetic improvement of black point resistance in wheat breeding. We performed a genome-wide association study (GWAS) using the high-density wheat 90 K and 660 K single nucleotide polymorphism (SNP) assays to better understand the genetic basis of black point resistance and identify associated molecular markers. RESULTS: Black point reactions were evaluated in 166 elite wheat cultivars in five environments. Twenty-five unique loci were identified on chromosomes 2A, 2B, 3A, 3B (2), 3D, 4B (2), 5A (3), 5B (3), 6A, 6B, 6D, 7A (5), 7B and 7D (2), respectively, explaining phenotypic variation ranging from 7.9 to 18.0%. The highest number of loci was detected in the A genome (11), followed by the B (10) and D (4) genomes. Among these, 13 were identified in two or more environments. Seven loci coincided with known genes or quantitative trait locus (QTL), whereas the other 18 were potentially novel loci. Linear regression showed a clear dependence of black point scores on the number of favorable alleles, suggesting that QTL pyramiding will be an effective approach to increase resistance. In silico analysis of sequences of resistance-associated SNPs identified 6 genes possibly involved in oxidase, signal transduction and stress resistance as candidate genes involved in black point reaction. CONCLUSION: SNP markers significantly associated with black point resistance and accessions with a larger number of resistance alleles can be used to further enhance black point resistance in breeding. This study provides new insights into the genetic architecture of black point reaction.


Asunto(s)
Genoma de Planta , Enfermedades de las Plantas/genética , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Variación Genética , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA