Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Small ; : e2311283, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716925

RESUMEN

Bio-inspired in nature, using nanomaterials to fabricate the vivid bionic structural color and intelligent stimulus responsive interface as smart skin or optical devices are widely concerned and remain a huge challenge. Here, the bionic flexible film is designed and fabricated with chiral nanointerface and tunable hydrophilic-hydrophobic by the ultrasonic energy perturbation strategy and crosslinking of the cellulose nanocrystals (CNC). An intelligent nanointerface with adjustable hydrophilic and hydrophobic properties is constructed by the supramolecular assembly using a smart ionic liquid molecule. The bionic flexible film possessed the variable hydrophilic-hydrophobic, stimulus responsive, and robust iridescent structural color. The reflective wavelength and the helical pitch of the film can be easily modulated through the ultrasonic energy perturbation strategy. The bionic flexible film by covalent cross-linking has excellent robustness, good elasticity and flexibility. The tunable brilliant structural color of the chiral nanointerface is attributed to the surface charge change of the CNC photonic crystal, which is disturbed by ultrasonic energy perturbation. The bionic flexible film with tunable structure color has intelligent hydrophilic and hydrophobic stimulus response properties. The chiral bionic materials have potential applications in smart skin, optical devices, bionic materials, robots, anti-counterfeiting, colorful displays, and stealth materials.

2.
Nano Lett ; 22(15): 6383-6390, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35866680

RESUMEN

Designing intelligent molecules and smart nanomaterials as molecular machines is becoming increasingly important in the nanoscience fields. Herein, we report a nanodot actuator with changeable fluorescence by π-π stacking force based on a four-armed foldable phthalocyanine molecule. The assembled nanodot possessed a three-dimensional molecular space structure and multiple supramolecular interactions. The arms of the nanodot could fold and open intelligently in response to environmental molecular stimuli such as natural plant mimosa, which could lead to multiple variable fluorescence emissions. The nanodot was highly sensitive to the biomolecule thyroxine at the molecular level. The accurate molecular recognition and the changeable fluorescence conversion of the nanodot were attributed to multiple supramolecular interactions, including photoinduced electron transfer (PET), intramolecular fluorescence resonance energy transfer (FRET), and π-π stacking of the nanodots, resulting in an intelligent "nanodot machine with folding arms". The self-assembled nanodot actuators with changeable fluorescence have potential applications in advanced intelligent material fields.


Asunto(s)
Nanoestructuras , Transferencia Resonante de Energía de Fluorescencia , Isoindoles , Conformación Molecular
3.
Carbohydr Polym ; 331: 121895, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38388066

RESUMEN

To design flexible functional materials with high efficiency, light weight, less metal consumption, stable structure for the thermal infrared stealth materials is a great challenge. We hypothesized that the use of crystal materials with different sizes to design composites with a chiral layered helical structure, the layered structures can repeatedly reflect infrared ray. Here, we reported the novel multi-scale layered helical chiral structure composite by self-assembly using the co-dispersion of cellulose nanocrystals (CNC) and micro-nano Al sheets. A new stable interlocking supermolecular structure is formed between the positively charged metal sheet and the negatively charged CNC photonic crystals. Metal sheets and CNC organic crystals were hybridized at the molecular level and form the Pickering-like CNC-Al co-dispersion system. The metal sheets in CNC chiral helical layered structure greatly improve its near-infrared reflection and stealth camouflage. Surprisingly, the CNC/Al composite on the heated glass substrate enabled the temperature drop 23 °C, and made its emissivity in the range of 7-14 µm significantly reduce. The synergetic effect of the Al sheets and the CNCs helical structure greatly improved the thermal infrared reflection and heat insulation properties. It is expected to provide a chiral layered material for the infrared stealth, and pattern camouflage fields.

4.
J Hazard Mater ; 416: 125697, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33823481

RESUMEN

Except the good separation performance, the membranes used for oil-water mixture separation should be fabricated with as little wastewater produced as possible. Thus, we proposed a green tactic--water vapor induced phase inversion to prepare the high-strength and superhydrophilic/underwater superoleophobic nonwoven fabric-based cotton/PA6/PAN membranes which is based on the polymer/solvent/nonsolvent ternary system analysis. Differing from adding additives in polymer solution or coagulation bath, above proposed strategy has an "subtractive effect" with the advantages of constructing three-dimensional porous structure and greatly reducing the organic wastewater produced during preparation process. Moreover, the obtained cotton/PA6/PAN membranes exhibited unexpected performances for separating oil-in-water emulsions. An ultrahigh permeation flux of up to 478,000 L m-2 h-1 bar-1 with a separation efficiency of > 99.9% was obtained under the driving pressure of 1.6 KPa, which was one order of magnitude higher than the conventional separation membranes with similar properties. In addition, it is surprising that the cotton/PA6/PAN membranes can also extract water from the slick oil/water immiscible mixture. Therefore, it is expected that the cotton/PA6/PAN membranes can be used in practical oily wastewater purification.


Asunto(s)
Purificación del Agua , Agua , Interacciones Hidrofóbicas e Hidrofílicas , Aceites , Aguas Residuales
5.
Materials (Basel) ; 14(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34640247

RESUMEN

The aerial parts of the Argy Worm Wood (AWW) plant have been used in different Chinese foods as a colorant and a taste enhancer for a long time. Despite its application as a food colorant, it has rarely been considered for the coloration of textiles. Keeping in mind the variation in color strength due to the change in phytochemical contents by seasonal change and other variables, the extraction of AWW aerial parts was optimized using the Taguchi method. Optimization was performed on the basis of total phytochemical contents (phenols, flavonoids, and tannins) in the extracted solutions. For this purpose, two different solvent systems, namely sodium hydroxide/water (NaOH/water) and ethanol/water (EtOH/water), were applied through a simple aqueous extraction method at varying levels of solvent concentration, and extraction temperature and duration. Maximum phytochemicals yield of 21.96% was obtained using NaOH/water system with 9 g/L NaOH/water at 85 °C for 20 min and 25.5% with 75% aqueous ethanol at 85 °C for 40 min. Optimized extracts were characterized by UV-Vis and FTIR spectrophotometry, which showed the presence of multiple phytochemicals in the extracts. The dyeing temperature and time were also optimized. Dyed cotton fabrics showed medium to high colorfastness to washing and excellent antibacterial and UV radiation absorption properties. The effect of pre-mordanting with salts of iron and copper was also studied on the color fastness properties. Cotton fabrics dyed with two different solvent system extracts displayed various shades of brown with NaOH/water, and green with aqueous ethanol with and without pre-mordanting. The present study provides the textile industry with a promising source of functional bio-colorant and a value-adding approach for the AWW plant industry.

6.
ACS Nano ; 14(6): 7380-7388, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32484339

RESUMEN

Chiral liquid crystal materials that are responsive to environmental stimuli are in demand. A chiral photonic crystal membrane based on cellulose nanocrystals (CNCs) was prepared by molecule assembly in the present work. A fluorescent molecule containing a cationic group, [N-(3-N-benzyl-N,N-dimethylpropyl ammonium chloride)-1,8-naphthalimide]hydrazine, was assembled on the surface of the CNCs. The new chiral photonic crystal membrane possesses supersensitive multiresponses to small molecules, such as water and formaldehyde molecules. The appearance, liquid crystal texture, fluorescence, and color of the chiral membrane have sensitive changes induced by small molecules. By increasing RH from 30 to 100%, the reflectance peak of the membrane red-shifted from 498 to 736 nm. In particular, the iridescent texture and fingerprint structure of the membrane could change markedly under trace amounts of formaldehyde, and the chiral membrane can form an extremely sensitive off-on fluorescence switch. The relationship between the fluorescence intensity and the trace concentration of formaldehyde satisfied the linear equation with the association coefficient of 0.9997. The changes in fluorescence and color are visible to the naked eye, and the membrane can quantitatively recognize trace formaldehyde at a molecular level in a humid environment. The mechanism by which the fluorescence switch operates was investigated using density functional theory at the B3LYP/6-31G(d) level. The membrane has potential for use in the fields of advanced functional materials and biomaterials.

7.
ACS Appl Mater Interfaces ; 12(21): 24505-24511, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32362108

RESUMEN

Light- and humidity-responsive chiral nematic photonic crystal (PC) films containing cellulose nanocrystals (CNCs) were fabricated. A photoactive polymer with hydrophilic groups, poly-(3,3'-benzophenone-4,4'-dicarboxylic acid dicarboxylate polyethylene glycol) ester, was coassembled with CNCs to form flexible iridescent films with a tunable chiral nematic order. In the coassembly process, the intermolecular hydrogen bonds of CNCs were weakened, which facilitated the fine regulation of the chiral PC nanostructure. The PC films displayed sensitive responses to both light and humidity. With increasing humidity from 30 to 100%, the chiral nematic helix pitch increased from 328 to 422 nm. The color of the PC films changed from blue to green, yellow, orange, and dark red with increasing relative humidity. Over 15 min of light irradiation, the absorption intensity of the films increased gradually. The light and humidity responses of the films were reversible. The films maintained their variable cholesteric liquid crystal texture and helical lamellar structure after light irradiation at different humidities. These PC films are expected to be useful in intelligent coatings and 3D printing.

8.
Mater Sci Eng C Mater Biol Appl ; 103: 109821, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31349531

RESUMEN

Violacein, a natural violet biopigment with efficient bioactivities from Gram-negative bacteria, possesses good affinity to silk fiber and complexes with silver. In this paper, a new approach involving the surface modification of silk fabrics with violacein for the in-situ synthesis of silver nanoparticles (SNPs) was developed. Violacein is used to modify silk material. Subsequently, silk containing bio-violacein was in situ assembled by silver ions and formed SNPs. Functional silk composites (FSC) containing bio-violacein and SNPs were obtained with effective synergistic antimicrobial effects. FSC were characterized by FT-IR spectroscopy, UV-visible absorption spectroscopy, and scanning electron microscopy/energy dispersive spectroscopy, and X-ray diffraction. Exhaustion and amount of violacein on silk fabric were 65.82% and 0.16 g/g, respectively. SNPs were small particles with irregular shapes and sizes <60-70 nm. Antimicrobial activities of the FSC were evaluated against S. aureus, E. coli, and C. albicans. The silk fabric with violacein possessed good antimicrobial activity against S. aureus, with a bacterial reduction of 81.25%. FSC with violacein combined with SNPs integration exhibited good synergistic properties as excellent antimicrobial activities against S. aureus, E. coli, and C. albicans, with microbial reductions of 99.98%, 99.90%, and 99.85%, respectively. FSC not only exhibited the enhanced antimicrobial effects but also exhibited a broadened antimicrobial range.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Indoles/farmacología , Nanopartículas del Metal/química , Seda/farmacología , Plata/farmacología , Candida albicans/efectos de los fármacos , Sinergismo Farmacológico , Escherichia coli/efectos de los fármacos , Nanopartículas del Metal/uso terapéutico , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Seda/química , Plata/química , Espectrometría por Rayos X , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Difracción de Rayos X
9.
ACS Appl Mater Interfaces ; 11(29): 26500-26506, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31241311

RESUMEN

Developing an efficient antimicrobial surface has important significance in the field of advanced biomaterials. A novel water-soluble benzophenone tetracarboxylamine derivative containing two quaternary ammonium groups, 3,3'-[4,4'-carbonyl-diphthalimide-]-bis(N-benzyl-N,N-dimethyl-N-propyl-1-aminium)dichloride (BPTCA-N), as a photoactive antibacterial agent was designed and synthesized. The ability of BPTCA-N to generate reactive oxygen species (ROS) in solution was investigated by light-induced activity. Its antibacterial activity in a dark environment or UV exposure was tested on Staphylococcus aureus and Escherichia coli. The influences of different solvents and the pH values on the ability of BPTCA-N to generate ROS were also discussed. BPTCA-N possessed high photoactivity and efficient ROS generation ability. The generation of hydroxyl radicals could be greatly affected by addition of other solvents and H+ or OH-. For the BPTCA-N solution at a concentration of 0.2 mmol/L, the reduction of S. aureus and E. coli could all reach 99.99%. The BPTCA-N compound was assembled onto wool protein fibers. The modified protein fabrics also showed excellent photoactivity and antibacterial property against S. aureus and E. coli. For the wool fabric modified with 30 g/L of BPTCA-N, the reduction of S. aureus could reach 99.91% and that of E. coli was 91.23%. BPTCA-N had the synergistic antibacterial effect of quaternary ammonium salt and benzophenones. It has potential application in the biomedical field as highly effective antimicrobial agent or antimicrobial biomaterial.


Asunto(s)
Antibacterianos , Benzofenonas , Escherichia coli/crecimiento & desarrollo , Compuestos de Amonio Cuaternario , Especies Reactivas de Oxígeno/química , Staphylococcus aureus/crecimiento & desarrollo , Rayos Ultravioleta , Fibra de Lana/microbiología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Benzofenonas/farmacología , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología
10.
Bioresour Technol ; 232: 254-262, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28235662

RESUMEN

High-efficiency and recyclable three-dimensional bioadsorbents were prepared by incorporating cellulose nanocrystal (CNC) as reinforcements in keratin sponge matrix to remove dyes from aqueous solution. Adsorption performance of dyes by CNC-reinforced keratin bioadsorbent was improved significantly as a result of adding CNC as filler. Batch adsorption results showed that the adsorption capacities for Reactive Black 5 and Direct Red 80 by the bioadsorbent were 1201 and 1070mgg-1, respectively. The isotherms and kinetics for adsorption of both dyes on bioadsorbent followed the Langmuir isotherm model and pseudo-second order model, respectively. Desorption and regeneration experiments showed that the removal efficiencies of the bioadsorbent for both dyes could remain above 80% at the fifth recycling cycles. Moreover, the bioadsorbent possessed excellent packed-bed column operation performance. Those results suggested that the adsorbent could be considered as a high-performance and promising candidate for dye wastewater treatment.


Asunto(s)
Celulosa/química , Colorantes/farmacocinética , Queratinas/química , Membranas Artificiales , Nanopartículas/química , Contaminantes Químicos del Agua/farmacocinética , Purificación del Agua , Adsorción , Compuestos Azo/farmacocinética , Concentración de Iones de Hidrógeno , Cinética , Naftalenosulfonatos/farmacocinética , Aguas Residuales/química , Agua/química , Contaminantes Químicos del Agua/química , Purificación del Agua/instrumentación , Purificación del Agua/métodos
11.
Adv Mater ; 29(26)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28466959

RESUMEN

Here, this study reports a novel confined-space thermal dewetting strategy for the fabrication of Au nanocups with tunable diameter, height, and size of cup opening. The nanocup morphology is defined by the cup-shaped void space created by a yolk-shell silica template that spontaneously takes an eccentric configuration during annealing. Thermal dewetting of Au, which is sandwiched between the yolk and shell, leads to the desired nanocup morphology. With strong scattering in near infrared, the Au nanocups exhibit superior efficiency as contrast agents for spectral-domain optical coherence tomography imaging. This confined-space thermal dewetting strategy is scalable and general, and can be potentially extended to the synthesis of novel anisotropic nanostructures of various compositions that are difficult to produce by conventional wet chemical or physical methods, thus opening up opportunities for many new applications.

12.
Carbohydr Polym ; 130: 381-7, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26076639

RESUMEN

The functional nano-hybrid surface containing multi-walled carbon nanotubes (MWCNT) on chitosan incorporated with the cationic chitosan (C-CS), MWCNTs and silicon couple agent (KH-560) was designed and prepared. The nano-hybrid membranes (NHM) containing MWCNTs were modified by perfluorooctanesulfonyl fluoride (PFOSF). The superhydrophobic multi-functional membranes with biological activity and superhydrophobic surface were obtained. The incorporated MWCNTs improved the roughness of the nano-hybrid membranes. The perfluorinated end groups of the nano-hybrid membrane surface provided low energy surface. The antibacterial activity, surface superhydrophobicity and mechanical property of the perfluorinated nano-hybrid membranes (PFNM) were discussed. Their morphological structures and surface ingredients were characterized by energy dispersive X-ray spectrometer (SEM-EDX). The PFNMs had excellent antibacterial property and superhydrophobicity. The novel nano-hybrid membranes with excellent antibacterial, superhydrophbic, and mechanical properties have potential applications in the food engineering, bioengineering fields and medical materials.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Materiales Biocompatibles/química , Quitosano/química , Membranas/química , Nanocompuestos/química , Nanotubos de Carbono/química , Antibacterianos/química , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier
13.
Carbohydr Polym ; 113: 77-82, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25256461

RESUMEN

The printed cellulose and its blend materials have wide applications in many high-tech fields. Six new reactive disperse dyes (D1-D6) containing a 3-chloro-2-hydroxypropyl group based on epichlorohydrin were designed and synthesized. The electronic absorption spectra and their grafting printing property for cotton fabrics were investigated. The grafting mechanism on cotton fabric was also discussed. The results show that these dyes had larger bathochromic shifts in stronger polar solvent, dimethylformamide, than in the weaker polar solvents, acetonitrile and acetone. 3-Chloro-2-hydroxypropyl functional group of the dyes could form covalent bond with the hydroxyl group on cellulose by a nucleophilic substituted reaction. The good color yields of D1-D6 on printed cotton fabric were obtained by curing at 170-180 °C. The reactive disperse dyes for printing cellulose fabric had good building up and better printing property. The light fastness, rubbing fastness and fastness to perspiration of the printed fabric were good. The reactive disperse dyes have potential application in cleaner production of printing cotton and cotton/polyester blend fabrics.

14.
Carbohydr Polym ; 101: 666-70, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24299824

RESUMEN

Cellulose fabric is an important printing substrate. Four red azo reactive dyes based on 1-naphthol-8-amino-3,6-disulfonic acid for cotton fabric printing were designed. Their UV-Vis spectra and printing properties for cotton were investigated. The relationship between the chemical structures of the dyes and their printing properties on cotton fabric was discussed. The results show that the color yield (K/S) values of the printed fabrics decreased with the increase of sulfonate groups, but the fixation and penetration of the reactive dyes on cotton fabric increased. The reactive dyes with fewer number sulfonate groups were sensitive to alkaline and urea. Whereas, the reactive dyes with numerous sulfonate groups were not sensitive to urea and had good leveling properties, penetration uniformity, and good wet fastness for cotton fabric. Surface wettability of all cotton fabrics printed with four dyes was excellent. It is possible to print cotton fabric urea-free using the reactive dyes with numerous sulfonate groups.


Asunto(s)
Celulosa/química , Colorantes/química , Fibra de Algodón , Naftalenosulfonatos/química , Impresión , Ácidos Sulfónicos/química , Color , Urea/química , Humectabilidad
15.
Carbohydr Polym ; 103: 558-65, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24528766

RESUMEN

In this research, modified cotton fabrics were prepared by pad-dry-cure technique from the aldehyde chitosan solution containing 3-aminopropyltriethoxysilane (APTES) and 1,2-ethanediamine (EDA) respectively. The structural characterization of the modified cotton fabrics was performed by attenuated total reflection ATR, scanning electron microscopy (SEM) and thermogravimetry (TG) analysis and physical mechanical properties were measured. The adsorption kinetics of modified cotton fabrics were also investigated by using the pseudo first-order and pseudo second-order kinetic model. The dyeing rate constant k1, k2 and half adsorption time t1/2 were calculated, respectively. The results show that the mechanical properties of different modified cotton fabrics were improved, and the surface color depth values (K/S), UV index UPF and anti-wrinkle properties were better than those of untreated cotton. Dyeing kinetics data at different temperatures indicate that Direct Pink 12B up-take on the modified cotton fabrics fitted to pseudo second-order kinetic model.

16.
Carbohydr Polym ; 98(1): 706-10, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23987402

RESUMEN

Boric acid and compound containing nitrogen, 2,4,6-tri[(2-hydroxy-3-trimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-HTAC) were used to finish cotton fabric. The flame retardant properties of the finished cotton fabrics and the synergetic effects of boron and nitrogen elements were investigated and evaluated by limited oxygen index (LOI) method. The mechanism of cross-linking reaction among cotton fiber, Tri-HTAC, and boric acid was discussed by FTIR and element analysis. The thermal stability and surface morphology of the finished cotton fabrics were investigated by thermogravimetric analysis (TGA) and scanning electron microscope (SEM), respectively. The finishing system of the mixture containing boron and nitrogen showed excellent synergistic flame retardancy for cotton fabric. The cotton fabric finished with mixture system had excellent flame retardancy. The LOI value of the treated cotton fabric increased over 27.5. Tri-HTAC could form covalent bonds with cellulose fiber and boric acid. The flame retardant cotton fabric showed a slight decrease in tensile strength and whiteness. The surface morphology of flame retardant cotton fiber was smooth.


Asunto(s)
Ácidos Bóricos/química , Fibra de Algodón , Retardadores de Llama , Triazinas/química , Fenómenos Físicos , Propiedades de Superficie , Temperatura , Termogravimetría
17.
J Colloid Interface Sci ; 360(2): 690-4, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21570087

RESUMEN

Novel chiral molecules containing cationic groups, (N-[4-triethylammoniomethyl]-benzoyl ester)-ethyl lactate chloride and bi-(N-[4-triethylammoniomethyl]-benzoyl ester)-isosorbide chloride, were designed and synthesized. Chemical structures of the molecules were characterized by elemental analysis, FT-IR, and (1)H NMR. The photochemical properties of the chiral compounds and their textures in nematic liquid crystals (LCs) were investigated by optical rotation, circular dichroism (CD), and polarizing optical microscopy (POM). The novel chiral molecules exhibited good optical activity. The chiral compound based on a L-ethyl lactate chiral center had a left-handed configuration. The chiral compound based on an isosorbide chiral center had a right-handed configuration. The cationic polar groups did not affect the direction of optical rotation, but could effluence the molar rotation of chiral compounds. The mixtures with dopants showed oily streak textures. Doping of a nematic phase liquid crystal with the chiral molecules converted it to the cholesteric phase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA