Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 63, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38280977

RESUMEN

SpCas9 and AsCas12a are widely utilized as genome editing tools in human cells, but their applications are largely limited by their bulky size. Recently, AsCas12f1 protein, with a small size (422 amino acids), has been demonstrated to be capable of cleaving double-stranded DNA protospacer adjacent motif (PAM). However, low editing efficiency and large differences in activity against different genomic loci have been a limitation in its application. Here, we show that engineered AsCas12f1 sgRNA has significantly improved the editing efficiency in human cells and mouse embryos. Moreover, we successfully generated three stable mouse mutant disease models using the engineered CRISPR-AsCas12f1 system in this study. Collectively, our work uncovers the engineered AsCas12f1 system expands mini CRISPR toolbox, providing a remarkable promise for therapeutic applications.


Asunto(s)
Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Ratones , Animales , Humanos , Sistemas CRISPR-Cas/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Streptococcus pyogenes , Edición Génica , Mutagénesis
2.
BMC Biol ; 21(1): 250, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946200

RESUMEN

BACKGROUND: Nme2ABE8e has been constructed and characterized as a compact, accurate adenine base editor with a less restrictive dinucleotide protospacer-adjacent motif (PAM: N4CC) but low editing efficiency at challenging loci in human cells. Here, we engineered a subset of domain-inlaid Nme2Cas9 base editors to bring the deaminase domain closer to the nontarget strand to improve editing efficiency. RESULTS: Our results demonstrated that Nme2ABE8e-797 with adenine deaminase inserted between amino acids 797 and 798 has a significantly increased editing efficiency with a wide editing window ranging from 4 to 18 bases in mammalian cells, especially at the sites that were difficult to edit by Nme2ABE8e. In addition, by swapping the PAM-interacting domain of Nme2ABE8e-797 with that of SmuCas9 or introducing point mutations of eNme2-C in Nme2ABE8e-797, we created Nme2ABE8e-797Smu and Nme2ABE8e-797-C, respectively, which exhibited robust activities at a wide range of sites with N4CN PAMs in human cells. Moreover, the modified domain-inlaid Nme2ABE8e can efficiently restore or install disease-related loci in Neuro-2a cells and mice. CONCLUSIONS: These novel Nme2ABE8es with increased on-target DNA editing and expanded PAM compatibility will expand the base editing toolset for efficient gene modification and therapeutic applications.


Asunto(s)
Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Animales , Humanos , Ratones , Proteína 9 Asociada a CRISPR/genética , Adenina/química , Edición Génica/métodos , ADN/genética , Mamíferos/genética
3.
Plant Dis ; 2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36336671

RESUMEN

Mahonia fortunei, belonging to the Berberidaceae family, is widely cultivated in fields, parks, courtyards, and roadsides for its excellent ornamental characteristics and medicinal values in southern China (Yu and Chung 2017). In May 2021, leaf spots were observed on nearly 60~80% of M. fortunei plants growing in Chongqing Normal University campus (29°36'42″N; 106°17'59″E) from Chongqing City, China. The typical symptoms on leaves were irregular spots with gray centers, brown edges, and chlorotic halos, about 1 to 7 mm in diameter, and eventually coalesced forming larger necrotic areas. Twenty symptomatic leaves were randomly sampled from five diseased plants. Tissues were cut from the lesion margins and surface sterilized in 75% ethanol for 1 min, rinsed thrice with sterile water, dried on sterilized paper, plated on potato dextrose agar (PDA) plates, and incubated at 25°C for 7 days in the dark. A total of 20 isolates were obtained from the infected leaves. Pure colonies of all fungal isolates had similar characteristics, and three isolates were randomly selected (SD11, SD18, SD19) for further study. Colonies of this fungus were olivaceous greenish to olivaceous black with a granular surface, and irregular light olive edges, finally turning black on PDA. Pycnidia were black, globose, granular, and in clusters. Conidia (n=30) were hyaline, aseptate, unicellular, obovoid to ellipsoid, narrow end with single apical appendage, and 7.5~11.2 × 4.5 ~6.5 µm. The DNA of three isolates were extracted and the internal transcribed spacer (ITS) region, actin (ACT), and translation elongation factor 1-α (TEF1) genes were amplified and sequenced using the primers ITS1/ITS4 (White et al. 1990), ACT512F/ACT783R, and ER728F/EF986R (Carbone and Kohn 1999), respectively. The sequences of three isolates were 100% identical, and one representative isolate SD18 were deposited in GenBank (ON231754, ITS; ON246259, ACT; and ON246258, TEF1). Sequence analysis revealed that the consensus sequences of ITS, ACT, and TEF1 of isolate SD18 was 99 to 100% identical to each sequence of an Indonesian strain (CBS 117118) of P. capitalensis from Musa acuminate (FJ538339 for ITS, FJ538455 for ACT, FJ538397 for TEF1). Phylogenetic analysis using Maximum Likelihood and concatenated sequences (ITS+ACT+TEF1) with MEGA7 placed isolate SD18 in P. capitalensis with 100% bootstrap support. Based on these morphological and molecular characteristics, the isolates were identified as P. capitalensis (Wikee et al. 2013). To fulfill Koch's postulates, 8 healthy potted plants were inoculated with 106 conidia/ml suspension of isolate SD18 by spraying the leaves, and another 8 plants were sprayed with sterile distilled water as control. All plants were covered with plastic bags for two days and then arranged in a greenhouse with 80% relative humidity at 25°C. The pathogenicity test was repeated thrice. After 18 days inoculation, the similar symptoms were observed on the inoculated plants, whereas control plants remained healthy. The pathogen was reisolated from symptomatic tissue and identified as P. capitalensis by the methods described above. P. capitalensis has been reported causing leaf spot on various host plants around the world (Wikee et al. 2013), recently found on tea plant, castor, and oil palm (Cheng et al. 2019; Tang et al. 2020; Nasehi et al. 2020). This is the first report of P. capitalensis causing leaf spot on M. fortune in China, and will establish a foundation for controlling the disease.

4.
Sci Adv ; 10(11): eadk8052, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489357

RESUMEN

Currently, the Cas9 and Cas12a systems are widely used for genome editing, but their ability to precisely generate large chromosome fragment deletions is limited. Type I-E CRISPR mediates broad and unidirectional DNA degradation, but controlling the size of Cas3-mediated DNA deletions has proven elusive thus far. Here, we demonstrate that the endonuclease deactivation of Cas9 (dCas9) can precisely control Cas3-mediated large-fragment deletions in mammalian cells. In addition, we report the elimination of the Y chromosome and precise retention of the Sry gene in mice using CRISPR/Cas3 and dCas9-controlled CRISPR/Cas3, respectively. In conclusion, dCas9-controlled CRISPR/Cas3-mediated precise large-fragment deletion provides an approach for establishing animal models by chromosome elimination. This method also holds promise as a potential therapeutic strategy for treating fragment mutations or human aneuploidy diseases that involve additional chromosomes.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Ratones , Humanos , Animales , Edición Génica , Cromosoma Y , Proteínas Asociadas a CRISPR/genética , ADN/genética , Mamíferos/genética
5.
Data Brief ; 43: 108383, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35761992

RESUMEN

The mechanical properties of the plant culture medium affect plant growth and development significantly. The paper presents the data created for the published article entitled "Resistance from agar medium impacts the helical growth of Arabidopsis primary roots". The data contains the real-time output forces of 0.5‒1.2% agar media from Bluehill software, and the forces on the agar surfaces changing with the increase of displacement. Oscillatory rheological experiments were employed to verify the stiffness results of 0.5‒1.2% agar media. Helix diameter and length of roots grown in gradient agar media for Col-0 and DR5-GUS Arabidopsis are exhibited.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA