Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 30(13): 22746-22754, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36224965

RESUMEN

A magnetic field sensor based on a side-polished two-core fiber (SPTCF)-based Michelson interferometer (MI) has been developed and demonstrated. The magnetic field sensor is composed of a standard single mode fiber (SMF) and a section of tapered TCF. By side-polishing a segment of the TCF, the effective index of the exposed core can be made sensitive to the environmental refractive index (RI). To evaluate its performance, a magnetic fluid is used to cover the polished region with a magnetic field sensitive material, where the sensor then measures the magnetic field intensity by sensing the RI change of the magnetic fluid through the evanescent field in the polished core. The SPTCF MI device developed allows for vector magnetic field sensing because of its asymmetric structure, with its highest directional sensitivity being 55.2 pm/degree. Experimental results obtained show that when the magnetic field is parallel to the side-polished plane, a sensitivity of 1.262 nm/mT can be achieved, operating over the magnetic flux density region of 0-5 mT and over a temperature range of 20∼85 °C, where the device is minimally affected by temperature changes. The sensor is well suited to a variety of potential applications given its low cost, strong anti-interference ability, simple structure and high stability.

2.
Int J Mol Sci ; 20(14)2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31330842

RESUMEN

Elastin-Like polypeptides (ELPs), as well-known temperature-controlled bio-macromolecules, are widely used. However, little is known about the interactions between ELPs and macromolecules, which is an important yet neglected problem. Here, the phase transition characteristics of an ELPs-SpyCatcher fusion protein (E-C) in the presence of polyethylene glycol (PEG) in single salts (Na2CO3, Na2SO4, NaCl) solutions were investigated using a UV spectrophotometer, DLC, and fluorescence spectroscopy, and we got some interesting results. The phases transition of E-C occurred at a concentration lower than 0.5 mol/L Na2CO3/PEG2000, while in single Na2CO3 (<0.5 mol/L), the phase transition of E-C did not occur. In the Na2CO3/PEG solution, we observed a unique two-step phase transition of E-C when the Na2CO3 concentration was 0.5 mol/L and PEG2000 concentration was less than 0.15 g/mL, respectively. In the Na2CO3/PEG2000 solution, the phase-transition temperature of E-C decreased with the increase of PEG concentration, but increased in the Na2SO4/PEG2000 solution, while it remained unchanged in the NaCl/PEG2000 solution. However, the phase-transition temperature of the linear ELPs40 decreased under the same salts/PEG2000 solutions. We also addressed the possible molecular mechanism of the interesting results. In contrast to the current well-understood salts-ELPs interactions, this work provides some new insights into the interaction between the PEG-salts-ELPs in solution.


Asunto(s)
Elastina/química , Péptidos/química , Polietilenglicoles/química , Transición de Fase , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Temperatura de Transición
3.
Nanotechnology ; 29(17): 175203, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29438100

RESUMEN

Compared to organic-inorganic hybrid metal halide perovskites, all-inorganic cesium lead halides (e.g, CsPbBr3) hold greater promise in being emissive materials for light-emitting diodes owing to their superior optoelectronic properties as well as their higher stabilities. However, there is still considerable potential for breakthroughs in the current efficiency of CsPbBr3 perovskite light-emitting diodes (PeLEDs). Electrode quenching is one of the main problems limiting the current efficiency of PeLEDs when poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is used as the hole injection layer. In this work, electrode quenching control was realized via incorporating Au NPs into PEDOT:PSS. As a result, the CsPbBr3 PeLEDs realized an improvement in maximum luminescence ranging from ∼2348 to ∼7660 cd m-2 (∼226% enhancement) and current efficiency from 1.65 to 3.08 cd A-1 (∼86% enhancement). Such substantial enhancement of the electroluminescent performance can be attributed to effective electrode quenching control at the PEDOT:PSS/CsPbBr3 perovskite interface via the combined effects of local surface plasma resonance coupling and enhanced hole transportation in the PEDOT:PSS layer by Au nanoparticles.

4.
Nanotechnology ; 29(7): 075203, 2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29210672

RESUMEN

Organic-inorganic hybrid perovskites have attracted great attention in the field of lighting and display due to their very high color purity and low-cost solution-process. Researchers have done a lot of work in realizing high performance electroluminescent devices. However, the current efficiency (CE) of methyl-ammonium lead halide perovskite light-emitting diodes (PeLEDs) still needs to be improved. Herein, we demonstrate the enhanced performance of PeLEDs through introducing an ultrathin poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) buffer layer between poly(3,4-ethylendioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and CH3NH3PbBr3 perovskite. Compared to the reference device without PFO, the optimal device luminous intensity, the maximum CE, and the maximum external quantum efficiency increases from 8139 cd m-2 to 30 150 cd m-2, from 7.20 cd A-1 (at 6.8 V) to 10.05 cd A-1 (at 6.6 V), and from 1.73% to 2.44%, respectively. The ultrathin PFO layer not only reduces the exciton quenching at the interface between the hole-transport layer and emission layer, but also passivates the shallow-trap ensure increasing hole injection, as well as increases the coverage of perovskite film.

5.
Adv Mater ; 36(26): e2402824, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588011

RESUMEN

Triboelectric-electromagnetic hybrid nanogenerator (TEHG) has emerged as a promising technology for distributed energy harvesting. However, currently reported hybrid generators are straightforward combinations of two functional components. Moreover, inevitable heat from friction intensifies material abrasion and degrades the performance of polymer-based triboelectric nanogenerators (TENGs). Here, a self-reinforcing TEHG (SR-TEHG) that harnesses the magnetocaloric and magnetization effects of gadolinium (Gd), is proposed. The synergy between TENG and electromagnetic generator (EMG) renders them an indivisible unit. Leveraging Gd's magnetocaloric effect, an efficient heat transfer mechanism is constructed to cool the tribolayer and strengthen the device's electrical stability. After 80 h of continuous operation, the optimized TENG occupies a charge decay rate of only 0.32% per hour, significantly outperforming most existing TENGs. Additionally, Gd's magnetization effect boosts the power of EMG by ≈80.84%. This work provides a universal solution in hybrid generators where internal components reinforce each other, achieving a synergistic effect of 1 + 1 > 2.

6.
RSC Adv ; 8(28): 15698-15702, 2018 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35539492

RESUMEN

A novel mixed perovskite emitter layer is applied to design all-inorganic cesium lead halide perovskite light-emitting diodes (PeLEDs) with high electroluminescence (EL) performance, by combining CsPbBr3 with iridium(iii)bis[2-(4',6'-difluorophenyl)pyridinato-N,C2']-picolinate (FIrpic), where FIrpic is a phosphorescent material with very high internal quantum efficiency (IQE) approaching 100%. The CsPbBr3:FIrpic PeLEDs show a maximum luminance of 5486 cd m-2, and an external quantum efficiency of 0.47%, which are 1.84 and 1.76 times that of neat CsPbBr3 PeLEDs, respectively. It is found that FIrpic molecules as an assistant dopant can efficiently transmit energy from the excitons of FIrpic to the excited state of the CsPbBr3 emitter via a Förster energy transfer process, leading to enhanced EL efficiency in the CsPbBr3:FIrpic PeLEDs.

7.
J Phys Chem Lett ; 8(17): 3961-3969, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28786674

RESUMEN

Organic-inorganic hybrid perovskites have drawn considerable attention due to their great potentials in lighting and displaying. Despite great progress being demonstrated in perovskites light-emitting diodes (PeLEDs), the commercialization of PeLEDs was still limited by their low efficiencies and poor device stabilities. Utilizing the metallic nanoparticles was a feasible way to further improve the efficiencies of PeLEDs. Herein, substantially enhanced electroluminescent performance of CH3NH3PbBr3-based PeLEDs were first demonstrated by incorporating plasmonic gold nanoparticles (Au NPs) into the hole injection layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Compared to the reference device without Au NPs, 109% enhancement in maximum luminance and 97% enhancement in maximum EQE were achieved upon 9 vol % Au NPs doping. Such enhancements can be ascribed to the localized surface plasmon resonance between Au NPs and CH3NH3PbBr3 excitons, as well as the enhanced electrical conductivity of modified PEDOT:PSS. Our studies indicated great potential of Au NPs in developing highly efficient PeLEDs.

8.
J Phys Chem Lett ; 8(8): 1810-1818, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28387115

RESUMEN

Solution-processable organometal halide perovskites have been emerging as very promising materials for light-emitting diodes (LEDs) because of their high color purity, low cost, and high photoluminescence quantum yield. However, their electroluminescent performance is still limited by incomplete surface coverage and inefficient charge injection into the perovskite. Here, we demonstrate highly efficient perovskite LEDs (PeLEDs) incorporating full film coverage and bipolar charge injection within the active layer by introducing perovskite precursor poly(9-vinylcarbazole):1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (PVK:TPBi) toluene solution into CH3NH3PbBr3 N,N-dimethylformamide solution. Both the film coverage and the charge injections were simultaneously improved by antisolvent of toluene and PVK:TPBi matrix, respectively. After the film morphology and weight ratio of PVK:TPBi were carefully adjusted, the optimal PeLEDs gave efficient emission with turn-on voltage of ∼2.8 V, maximum luminance of ∼7263 cd/m2, maximum current efficiency of ∼9.45 cd/A, and maximum external quantum efficiency of ∼2.28%, which are among the best results based on MAPbBr3 reported to date.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA