Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 123(18): 11047-11136, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37677071

RESUMEN

Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.

2.
Apoptosis ; 29(1-2): 103-120, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37875647

RESUMEN

Disulfidoptosis and ferroptosis are two distinct programmed cell death pathways that have garnered considerable attention due to their potential as therapeutic targets. However, despite their significance of these pathways, the role of disulfidoptosis-related ferroptosis genes in hepatocellular carcinoma (HCC) remains unclear. In this study, we employed a comprehensive approach that utilized various sophisticated techniques such as Pearson analysis, differential analysis, uniCox regression, lasso, ranger, and multivariable Cox regression to develop the disulfidoptosis-related ferroptosis (DRF) score. We then classified patients with HCC into high- and low-score groups to examine the association between the DRF score and various outcomes, including prognosis, functional enrichment, immune infiltration, immunotherapy, TACE sensitivity, drug sensitivity, and single-cell level function. Finally, we conducted in vitro experiments to validate the function of KIF20A. Our analysis revealed that KIF20A, G6PD, SLC7A11, and SLC2A1 were integral to constructing the DRF score. Our findings showed that patients with low DRF scores had significantly better prognoses and were more responsive to immunotherapy, TACE, and chemotherapy than those with high DRF scores. Based on our results obtained from bulk RNA-seq, single-cell RNA-seq, and in vitro experiments, we identified the cell cycle pathway as the primary distinguished factor between high-score and low-score groups. This study sheds light on the contribution of disulfidoptosis-related ferroptosis genes to the development and progression of HCC. The information gleaned from this study can be leveraged to improve our understanding of their potential as therapeutic targets for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Apoptosis , Carcinoma Hepatocelular/genética , Ferroptosis/genética , Neoplasias Hepáticas/genética , Aprendizaje Automático
3.
Small ; : e2400408, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709208

RESUMEN

Stent-assisted coiling is a main treatment modality for intracranial aneurysms (IAs) in clinics, but critical challenges remain to be overcome, such as exogenous implant-induced stenosis and reliance on antiplatelet agents. Herein, an endovascular approach is reported for IA therapy without stent grafting or microcatheter shaping, enabled by active delivery of thrombin (Th) to target aneurysms using innovative phase-change material (PCM)-coated magnetite-thrombin (Fe3O4-Th@PCM) FTP nanorobots. The nanorobots are controlled by an integrated actuation system of dynamic torque-force hybrid magnetic fields. With robust intravascular navigation guided by real-time ultrasound imaging, nanorobotic collectives can effectively accumulate and retain in model aneurysms constructed in vivo, followed by controlled release of the encapsulated Th for rapid occlusion of the aneurysm upon melting the protective PCM (thermally responsive in a tunable manner) through focused magnetic hyperthermia. Complete and stable aneurysm embolization is confirmed by postoperative examination and 2-week postembolization follow-up using digital subtraction angiography (DSA), contrast-enhanced ultrasound (CEUS), and histological analysis. The safety of the embolization therapy is assessed through biocompatibility evaluation and histopathology assays. This strategy, seamlessly integrating secure drug packaging, agile magnetic actuation, and clinical interventional imaging, avoids possible exogenous implant rejection, circumvents cumbersome microcatheter shaping, and offers a promising option for IA therapy.

4.
Infection ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884857

RESUMEN

OBJECTIVES: In this retrospective observational multicenter study, we aimed to assess efficacy and mortality between ceftazidime/avibactam (CAZ/AVI) or polymyxin B (PMB)-based regimens for the treatment of Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections, as well as identify potential risk factors. METHODS: A total of 276 CRKP-infected patients were enrolled in our study. Binary logistic and Cox regression analysis with a propensity score-matched (PSM) model were performed to identify risk factors for efficacy and mortality. RESULTS: The patient cohort was divided into PMB-based regimen group (n = 98, 35.5%) and CAZ/AVI-based regimen group (n = 178, 64.5%). Compared to the PMB group, the CAZ/AVI group exhibited significantly higher rates of clinical efficacy (71.3% vs. 56.1%; p = 0.011), microbiological clearance (74.7% vs. 41.4%; p < 0.001), and a lower incidence of acute kidney injury (AKI) (13.5% vs. 33.7%; p < 0.001). Binary logistic regression revealed that the treatment duration independently influenced both clinical efficacy and microbiological clearance. Vasoactive drugs, sepsis/septic shock, APACHE II score, and treatment duration were identified as risk factors associated with 30-day all-cause mortality. The CAZ/AVI-based regimen was an independent factor for good clinical efficacy, microbiological clearance, and lower AKI incidence. CONCLUSIONS: For patients with CRKP infection, the CAZ/AVI-based regimen was superior to the PMB-based regimen.

5.
Cell Mol Biol Lett ; 29(1): 35, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475733

RESUMEN

BACKGROUND AND AIMS: Epidemiological evidence suggests that the phenotype of glutathione S-transferase mu 1 (GSTM1), a hepatic high-expressed phase II detoxification enzyme, is closely associated with the incidence of alcohol-related liver disease (ALD). However, whether and how hepatic GSTM1 determines the development of ALD is largely unclear. This study was designed to elucidate the role and potential mechanism(s) of hepatic GSTM1 in the pathological process of ALD. METHODS: GSTM1 was detected in the liver of various ALD mice models and cultured hepatocytes. Liver-specific GSTM1 or/and micro (miR)-743a-3p deficiency mice were generated by adenoassociated virus-8 delivered shRNA, respectively. The potential signal pathways involving in alcohol-regulated GSTM1 and GSTM1-associated ALD were explored via both genetic manipulation and pharmacological approaches. RESULTS: GSTM1 was significantly upregulated in both chronic alcohol-induced mice liver and ethanol-exposed murine primary hepatocytes. Alcohol-reduced miR-743a-3p directly contributed to the upregulation of GSTM1, since liver specific silencing miR-743a-3p enhanced GSTM1 and miR-743a-3p loss protected alcohol-induced liver dysfunctions, which was significantly blocked by GSTM1 knockdown. GSTM1 loss robustly aggravated alcohol-induced hepatic steatosis, oxidative stress, inflammation, and early fibrotic-like changes, which was associated with the activation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase (JNK), and p38. GSTM1 antagonized ASK1 phosphorylation and its downstream JNK/p38 signaling pathway upon chronic alcohol consumption via binding with ASK1. ASK1 blockage significantly rescued hepatic GSTM1 loss-enhanced disorders in alcohol-fed mice liver. CONCLUSIONS: Chronic alcohol consumption-induced upregulation of GSTM1 in the liver provides a feedback protection against hepatic steatosis and liver injury by counteracting ASK1 activation. Down-regulation of miR-743a-3p improves alcohol intake-induced hepatic steatosis and liver injury via direct targeting on GSTM1. The miR-743a-3p-GSTM1 axis functions as an innate protective pathway to defend the early stage of ALD.


Asunto(s)
Hígado Graso Alcohólico , Glutatión Transferasa , MicroARNs , Animales , Ratones , Glutatión Transferasa/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/patología , MicroARNs/metabolismo , Hígado Graso Alcohólico/metabolismo
6.
Funct Integr Genomics ; 23(2): 91, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36939945

RESUMEN

A model based on long non-coding RNA (lncRNA) pairs independent of expression quantification was constructed to evaluate prognosis melanoma and response to immunotherapy in melanoma. RNA sequencing data and clinical information were retrieved and downloaded from The Cancer Genome Atlas and the Genotype-Tissue Expression databases. We identified differentially expressed immune-related lncRNAs (DEirlncRNAs), matched them, and used least absolute shrinkage and selection operator and Cox regression to construct predictive models. The optimal cutoff value of the model was determined using a receiver operating characteristic curve and used to categorize melanoma cases into high-risk and low-risk groups. The predictive efficacy of the model with respect to prognosis was compared with that of clinical data and ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data). Then, we analyzed the correlations of risk score with clinical characteristics, immune cell invasion, anti-tumor, and tumor-promoting activities. Differences in survival, degree of immune cell infiltration, and intensity of anti-tumor and tumor-promoting activities were also evaluated in the high- and low-risk groups. A model based on 21 DEirlncRNA pairs was established. Compared with ESTIMATE score and clinical data, this model could better predict outcomes of melanoma patients. Follow-up analysis of the model's effectiveness showed that patients in the high-risk group had poorer prognosis and were less likely to benefit from immunotherapy compared with those in the low-risk group. Moreover, there were differences in tumor-infiltrating immune cells between the high-risk and low-risk groups. By pairing the DEirlncRNA, we constructed a model to evaluate the prognosis of cutaneous melanoma independent of a specific level of lncRNA expression.


Asunto(s)
Melanoma , ARN Largo no Codificante , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/terapia , ARN Largo no Codificante/genética , Pronóstico , Inmunoterapia , Biomarcadores de Tumor
7.
J Neuroinflammation ; 20(1): 285, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037097

RESUMEN

BACKGROUND AND PURPOSE: Cerebral ischemia‒reperfusion injury causes significant harm to human health and is a major contributor to stroke-related deaths worldwide. Current treatments are limited, and new, more effective prevention and treatment strategies that target multiple cell components are urgently needed. Leucine-rich alpha-2 glycoprotein 1 (Lrg1) appears to be associated with the progression of cerebral ischemia‒reperfusion injury, but the exact mechanism of it is unknown. METHODS: Wild-type (WT) and Lrg1 knockout (Lrg1-/-) mice were used to investigate the role of Lrg1 after cerebral ischemia‒reperfusion injury. The effects of Lrg1 knockout on brain infarct volume, blood‒brain barrier permeability, and neurological score (based on 2,3,5-triphenyl tetrazolium chloride, evans blue dye, hematoxylin, and eosin staining) were assessed. Single-cell RNA sequencing (scRNA-seq), immunofluorescence, and microvascular albumin leakage tests were utilized to investigate alterations in various cell components in brain tissue after Lrg1 knockout. RESULTS: Lrg1 expression was increased in various cell types of brain tissue after cerebral ischemia‒reperfusion injury. Lrg1 knockout reduced cerebral edema and infarct size and improved neurological function after cerebral ischemia‒reperfusion injury. Single-cell RNA sequencing analysis of WT and Lrg1-/- mouse brain tissues after cerebral ischemia‒reperfusion injury revealed that Lrg1 knockout enhances blood‒brain barrier (BBB) by upregulating claudin 11, integrin ß5, protocadherin 9, and annexin A2. Lrg1 knockout also promoted an anti-inflammatory and tissue-repairing phenotype in microglia and macrophages while reducing neuron and oligodendrocyte cell death. CONCLUSIONS: Our results has shown that Lrg1 mediates numerous pathological processes involved in cerebral ischemia‒reperfusion injury by altering the functional states of various cell types, thereby rendering it a promising therapeutic target for cerebral ischemia‒reperfusion injury.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Animales , Humanos , Ratones , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Daño por Reperfusión/metabolismo , Análisis de Secuencia de ARN
8.
Mol Carcinog ; 62(9): 1355-1368, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37212487

RESUMEN

The global burden of hepatocellular carcinoma (HCC) as a preeminent etiology of cancer-related mortalities sheds light on the imperative necessity for a more profound comprehension of its fundamental biological mechanisms. In this context, the precise function of the 26S proteasome non-ATPase regulatory subunit 11 (PSMD11) in HCC remains equivocal. To address this vital knowledge gap, we interrogated the cancer genome atlas, genotype-tissue expression, International cancer genome consortium, gene expression omnibus, the cancer cell line encyclopedia, and tumor immune single-cell hub databases to evaluate the expression pattern of PSMD11, further confirmed by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) in LO2, MHCC-97H, HepG2, and SMMC7721 cell lines. Additionally, we meticulously assessed the clinical significance and prognostic value of PSMD11, while also exploring its potential molecular mechanisms in HCC. Our findings demonstrated that PSMD11 was highly expressed in HCC tissues, correlating with pathologic stage and histologic grade, thereby conferring a poor prognosis. Mechanistically, PSMD11 appears to exert its tumorigenic effects through the modulation of tumor metabolism-related pathways. Impressively, low PSMD11 expression was associated with increased immune effector cell infiltration, heightened responsiveness to molecular targeted drugs such as dasatinib, erlotinib, gefitinib, and imatinib, as well as reduced somatic mutation rate. Additionally, we demonstrated that PSMD11 might modulate HCC development through intricate interactions with cuproptosis-related genes ATP7A, DLAT, and PDHA1. Our comprehensive analyses collectively suggest that PSMD11 represents a promising therapeutic target in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Pronóstico , Complejo de la Endopetidasa Proteasomal
9.
J Med Virol ; 95(7): e28920, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37386905

RESUMEN

Currently, various problems are being faced in the treatment of influenza, so the development of new safe and effective drugs is crucial. Selenadiazole, an important component of selenium heterocyclic compounds, has received wide attention for its biological activity. This study aimed to verify the antiviral activity of 5-nitrobenzo[c][1,2,5]selenadiazole (SeD-3) in vivo and in vitro. The cell counting kit-8 assay and observation of cytopathic effect verified that SeD-3 could improve the survival of influenza A(H1N1)pdm09-infected Madin-Darby canine kidney cells. Polymerase chain reaction quantification and neuraminidase assay showed that SeD-3 could inhibit the proliferation of H1N1 virus. The time of addition assay demonstrated that SeD-3 may have a direct effect on virus particles and block some stages of H1N1 life cycle after virus adsorption. Cell cycle, JC-1, Annexin V, and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling-4',6-diamidino-2-phenylindole (TUNEL-DAPI) assays showed that SeD-3 inhibited H1N1 infection-induced apoptosis. Cytokine detection demonstrated SeD-3 inhibited the production of proinflammatory factors after infection, including tumor necrosis factor-α (TNF-α), TNF-ß, interferon-γ, interleukin 12 (IL-12), and IL-17F. In vivo experiments suggested that the pathological damage in the lungs was significantly alleviated after treatment with SeD-3 by hematoxylin and eosin staining. The TUNEL assay of lung tissues indicated that SeD-3 inhibited DNA damage during H1N1 infection. Immunohistochemical assays were performed to further explore the mechanism that SeD-3 inhibited H1N1-induced apoptosis via reactive oxygen species-mediated MAPK, AKT, and P53 signaling pathways. In conclusion, SeD-3 may become a new potential anti-H1N1 influenza virus drug due to its antiviral and anti-inflammatory activity.


Asunto(s)
Gripe Humana , Animales , Perros , Humanos , Inflamación/tratamiento farmacológico , Estrés Oxidativo , Especies Reactivas de Oxígeno , Antivirales/farmacología , Antivirales/uso terapéutico
10.
J Org Chem ; 88(13): 8024-8033, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37226814

RESUMEN

In this study, we have successfully applied a visible-light-promoted desulfurization method to the synthesis of deoxysugars, especially 1-deoxyglycose, 2,4-deoxyglycosides, and 2-deoxyglycosides with exclusive α-configuration. Compared to the reported desulfurization under UV light (500 W mercury lamp), this desulfurization under visible light (20 W blue LED) is easy to operate since it does not require a dedicated photochemical reactor, occurs under very mild conditions, and is able to avoid many of the side reactions that often occur during the UV-induced desulfurization.


Asunto(s)
Sulfuros , Sulfuros/química , Luz , Oxidación-Reducción , Glicósidos/química
11.
Mikrochim Acta ; 190(6): 224, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184606

RESUMEN

Nitrogen-doped carbon dots (NCDs) have been constructed in which coal washing wastewater is used as carbon precursor, tryptophan is added for nitrogen doping and surface functional together with polyethylene glycol. The nitrogen doping and surface functional with electron rich groups resulted in excellent fluorescent properties regarding stability, reversibility, printability with high quantum yield which not only enable the NCDs as fluorescent ink for advanced message encryption, but also realize specific on-off-on fluorescent sensing of Hg2+ and GSH as solution, hydrogel and filter paper sensors. The NCDs had a linear range of 0.01-100 µM and a detection limit of 6.27 nM (RSD 0.33%) for Hg2+ and the NCDs@Hg2+ had a linear range of 0.01-60 µM and a detection limit of 3.53 nM (RSD 1.53%) for GSH in sensing studies with aqueous solutions. In addition, with the low cytotoxicity and good biocompatibility NCDs have been successfully used for imaging Hg2+ and GSH in living MG-63 cells. The presented NCDs recycle waste coal washing water into worthwhile material which can be implemented as promising anti-counterfeiting and message encryption candidates as well as effective Hg2+ and GSH sensing, tracking and removing tools in complicated environmental and biological systems.


Asunto(s)
Mercurio , Puntos Cuánticos , Carbono , Colorantes Fluorescentes , Glutatión , Mercurio/análisis , Nitrógeno
12.
Small ; 18(34): e2202848, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35905497

RESUMEN

Magnetic micro-/nanoparticles are extensively explored over the past decade as active diagnostic/therapeutic agents for minimally invasive medicine. However, sufficient function integration on these miniaturized bodies toward practical applications remains challenging. This work proposes a synergistic strategy via integrating particle functionalization and bioinspired swarming, demonstrated by recombinant tissue plasminogen activator modified magnetite nanoparticles (rtPA-Fe3 O4 NPs) for fast thrombolysis in vivo with low drug dosage. The synthesized rtPA-Fe3 O4 NPs exhibit superior magnetic performance, high biocompatibility, and thrombolytic enzyme activity. Benefiting from a customized magnetic operation system designed for animal experiments and preclinical development, these agglomeration-free NPs can assemble into micro-/milli-scale swarms capable of robust maneuver and reconfigurable transformation for on-demand tasks in complex biofluids. Specifically, the spinning mode of the swarm exerts focused fluid shear stresses while rubbing on the thrombus surface, constituting a mechanical force for clot breakdown. The synergy of the NPs' inherent enzymatic effect and swarming-triggered fluid forces enables amplified efficacy of thrombolysis in an in vivo occlusion model of rabbit carotid artery, using lower drug concentration than clinical dosage. Furthermore, swarming-enhanced ultrasound signals aid in imaging-guided treatment. Therefore, the pharmacomechanical NP swarms herein represent an injectable thrombolytic tool joining advantages of intravenous drug therapy and robotic intervention.


Asunto(s)
Nanopartículas de Magnetita , Trombosis , Animales , Fibrinólisis , Conejos , Terapia Trombolítica , Trombosis/tratamiento farmacológico , Activador de Tejido Plasminógeno/uso terapéutico
13.
Crit Rev Food Sci Nutr ; 62(16): 4504-4525, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33506686

RESUMEN

About one-third of the world population is suffering from iron deficiency. Delivery of iron through diet is a practical, economical, and sustainable approach. Clinical studies have shown that the consumption of iron-fortified foods is one of the most effective methods for the prevention of iron deficiency. However, supplementing iron through diet can cause undesirable side-effects. Thus, it is essential to develop new iron-rich ingredients, iron-fortified products with high bioavailability, better stability, and lower cost. It is also essential to develop newer processing technologies for more effective fortification. This review compared the iron supplementation strategies used to treat the highly iron-deficient population and the general public. We also reviewed the efficacy of functional (iron-rich) ingredients that can be incorporated into food materials to produce iron-fortified foods. The most commonly available foods, such as cereals, bakery products, dairy products, beverages, and condiments are still the best vehicles for iron fortification and delivery.Scope of reviewThe manuscript aims at providing a comprehensive review of the latest publications that cover three aspects: administration routes for iron supplementation, iron-rich ingredients used for iron supplementation, and iron-fortified foods.


Asunto(s)
Deficiencias de Hierro , Hierro , Dieta , Suplementos Dietéticos , Alimentos Fortificados , Humanos
14.
J Fluoresc ; 32(4): 1591-1600, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35576091

RESUMEN

A novel nitrogen doped and surface functionalized fluorescent CDs (T1) was synthesized by one-step and green hydrothermal method, which exhibits a satisfactory fluorescence quantum yield and a series of admirable features such as good aqueous solubility, narrow particle size distribution, resistance to photobleaching as well as excitation-dependent behavior. Benefitting from above merits, T1 can be employed to serve as an outstanding sensing platform for sensitive and accurate detection of ClO- by remarkable fluorescence "on-off" process with rapid and anti-interference. More notably, the good biocompatibility and photostability can ensure enormous bioimaging potential and successful application of T1 in monitoring of exogenous ClO- in MG-63 cells. Meanwhile, T1 can also be regarded as a filter paper sensor providing a convenient and efficient analyzing technology for monitoring of free residual chlorine in practical environmental samples. All these results demonstrate that there exists promising possibility for practical applications of T1 in bioimaging systems and environmental monitoring.


Asunto(s)
Nitrógeno , Puntos Cuánticos , Carbono , Colorantes Fluorescentes , Espectrometría de Fluorescencia/métodos
15.
J Environ Manage ; 316: 115286, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35658256

RESUMEN

To achieve green and low-carbon development, the Chinese government has selected pilot cities to implement the energy-saving and emission-reduction (ESER) policy in three batches since 2011. So far, there has been no systematic evidence on whether this policy can mitigate carbon emissions. To identify the causal impact of the ESER policy on carbon emissions, we exploit variations in the timing of this policy across cities and assemble a panel dataset of China's 284 cities from 2003 to 2019. Based on a difference-in-differences (DID) framework, we find a relative decline in carbon emissions in pilot cities after the ESER policy implementation, and in particular, this effect follows an increasing trend over time. Our mechanism analysis further corroborates that the carbon-reduction effect of the ESER policy could be achieved through promoting energy-saving effect, optimizing structure effect and strengthening green technique effect. In addition, the observed effect is abundantly heterogeneous in terms of geographic location, environmental constraint, financial self-sufficiency, resource endowment and carbon emissions distribution. Our findings provide empirical evidence from developing countries on the effectiveness of carbon-reduction policy, which demonstrates China's determination to achieve its two climate goals (carbon peaking by 2030 and carbon neutrality by 2060).


Asunto(s)
Carbono , Políticas , Carbono/análisis , Dióxido de Carbono/análisis , China , Ciudades
16.
Molecules ; 27(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36500346

RESUMEN

Acetalization and deacetalation are a pair of routine manipulations to protect and deprotect the 4- and 6-hydroxyl groups of glycosides in the synthesis of glycosyl building blocks. In this study, we found that treatment of SnCl4 with various carbohydrates containing acetal/ketal groups with the assistance of water in CH2Cl2 led to deacetalization/deketalization products in almost quantitative yields. In addition, for substrates containing both acetal/ketal and p-methoxylbenzyl groups, we also found that the p-methoxylbenzyl group was selectively cleaved by the use of a catalytic amount of SnCl4, while the acetal/ketal groups remained. Furthermore, based on this, 4,6-benzylidene glycosides can be conveniently converted to 4,6-OAc or 4-OH, 6-OAc glycosides.


Asunto(s)
Acetales , Agua , Carbohidratos , Glicósidos , Catálisis
17.
J Sci Food Agric ; 102(13): 5759-5767, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35398898

RESUMEN

BACKGROUND: In this study the potential of liposomes as a vitamin E (VE) and ß-carotene (ßC) delivery system was examined. The co-encapsulated liposomes of ßC and VE (L-VE-ßC) were prepared and characterized. Their antioxidant properties were evaluated by free radical scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), hydroxyl radical and lipid peroxidation assay. The in vitro sustained release behaviour was then investigated and discussed. RESULTS: VE and ßC were co-encapsulated in liposomes with high encapsulation efficiency, up to 92.49% and 86.16% for ßC and VE, respectively. The antioxidant activities of L-VE-ßC samples were significantly higher than that of single loaded liposome. Among different ratios of VE/ßC, L-VE-ßC at 5:3 exhibited the highest radical scavenging rates, with 66.80%, 56.58% and 34.39% for DPPH, ABTS and OH radical, respectively. L-VE-ßC samples also had a good ability to inhibit lipid peroxidation, especially the sample with ratios of VE/ßC at 5:3 and 3:1. In simulated gastrointestinal release, L-VE-ßC exhibited an excellent sustained release behaviour in SGF with the accumulated rate at about 20%, while the release rate in SIF increased to over 80%, where they should be absorbed. The release kinetics analysis indicated that ßC was released in the Higuchi model in stomach, and the Korsmeyr-Peppas model in intestine. CONCLUSION: Compared to single loaded liposomes, the combined-loaded liposomes exhibited higher antioxidant activity and bioavailability, suggesting the potential applications in functional foods. © 2022 Society of Chemical Industry.


Asunto(s)
Antioxidantes , beta Caroteno , Antioxidantes/química , Preparaciones de Acción Retardada , Liposomas/química , Vitamina E , beta Caroteno/química
18.
J Med Virol ; 93(6): 3532-3538, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33230830

RESUMEN

The infection of enterovirus 71 (EV71) resulted in hand, foot, and mouth disease and may lead to severe nervous system damage and even fatalities. There are no effective drugs to treat the EV71 virus and it is crucial to find novel drugs against it. Polysaccharide isolated from Durvillaea antarctica green algae has an antiviral effect. In this study, D. antarctica polysaccharide (DAPP) inhibited the infection of EV71 was demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), reverse transcription polymerase chain reaction, flow cytometry, and western blot. MTT assay showed that DAPP had no toxicity on Vero cells at the concentration 250 µg/ml. Furthermore, DAPP significantly reduced the RNA level of EV71 in a dose-dependent manner. Moreover, DAPP inhibited the Vero cells apoptosis induced by EV71 via the P53 signaling pathway. Meanwhile, the expression of signal transducer and activator of transcription 1 and mammalian target of rapamycin were increased and the proinflammatory cytokines were significantly inhibited by DAPP. Taken together, these results suggested that DAPP could be a potential pharmaceutical against the infection of EV71 virus.


Asunto(s)
Antivirales/farmacología , Apoptosis/efectos de los fármacos , Chlorophyta/química , Enterovirus Humano A/efectos de los fármacos , Genes p53/genética , Polisacáridos/farmacología , Factor de Transcripción STAT1/genética , Transducción de Señal/efectos de los fármacos , Animales , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Chlorocebus aethiops , Enterovirus Humano A/genética , Polisacáridos/química , Polisacáridos/aislamiento & purificación , ARN Viral/análisis , Células Vero
19.
Arch Virol ; 166(12): 3269-3274, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34536128

RESUMEN

Enterovirus 71 (EV71) poses a major threat to public health globally due to severe and even fatal hand, foot, and mouth disease (HFMD). However, no effective antiviral agents are available to treat HFMD caused by this virus. Polysaccharides have been shown to exhibit antiviral activity, and polysaccharides extracted from Picochlorum sp. 122 (PPE) could potentially be used to treat HFMD, but reports on their antiviral activity are limited. In this study, the antiviral activity of PPE against EV71 was verified in Vero cells. PPE was shown to limit EV71 infection, as demonstrated using an MTT assay and by observing the cellular cytopathic effect. In addition, a decrease in VP1 RNA and protein levels indicated that PPE effectively inhibits proliferation of EV71 in Vero cells. An annexin V affinity assay also indicated that PPE protects host cells from apoptosis through the AKT and ATM/ATR signalling pathways. These results demonstrate that PPE has potential as an antiviral drug to treat HFMD caused by EV71.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Animales , Chlorocebus aethiops , Infecciones por Enterovirus/tratamiento farmacológico , Enfermedad de Boca, Mano y Pie/tratamiento farmacológico , Polisacáridos , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Células Vero , Replicación Viral
20.
J Clin Periodontol ; 48(8): 1137-1148, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33998036

RESUMEN

AIM: To characterize gingival metabolome in high-fat diet (HFD)-induced obesity in mice with/without periodontitis. METHODS: HFD-induced obesity mouse model was established by 16-week feeding, and a lean control group was fed with low-fat diet (n = 21/group). Both models were induced for periodontitis on the left sides by molar ligation for 10 days, whereas the right sides were used as controls. Gingival metabolome and arginine metabolism were analysed by non-targeted/targeted liquid chromatography-mass spectrometry. RESULTS: Of 2247 reference features, presence of periodontitis altered 165 in lean versus 885 in HFD mice; and HFD altered 525 in absence versus 1435 in presence of periodontitis. Compared with healthy condition, periodontitis and HFD had distinct effects on gingival metabolome. Metabolomic impacts of periodontitis were generally greater in HFD mice versus lean controls. K-medoids clustering showed that HFD amplified the impacts of periodontitis on gingival metabolome in both intensity and extensity. Ten metabolic pathways were enriched, including 2 specific to periodontitis, 5 specific to HFD and 3 shared ones. Targeted validation on arginine metabolism confirmed the additive effects between HFD and periodontitis. CONCLUSION: The obese population consuming excessive HFD display amplified metabolic response to periodontitis, presenting a metabolic susceptibility to exacerbated periodontal destruction.


Asunto(s)
Dieta Alta en Grasa , Periodontitis , Animales , Dieta Alta en Grasa/efectos adversos , Metaboloma , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones , Periodontitis/etiología , Roedores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA