Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33990467

RESUMEN

Cardiac arrhythmias are the most common cause of sudden cardiac death worldwide. Lengthening the ventricular action potential duration (APD), either congenitally or via pathologic or pharmacologic means, predisposes to a life-threatening ventricular arrhythmia, Torsade de Pointes. IKs (KCNQ1+KCNE1), a slowly activating K+ current, plays a role in action potential repolarization. In this study, we screened a chemical library in silico by docking compounds to the voltage-sensing domain (VSD) of the IKs channel. Here, we show that C28 specifically shifted IKs VSD activation in ventricle to more negative voltages and reversed the drug-induced lengthening of APD. At the same dosage, C28 did not cause significant changes of the normal APD in either ventricle or atrium. This study provides evidence in support of a computational prediction of IKs VSD activation as a potential therapeutic approach for all forms of APD prolongation. This outcome could expand the therapeutic efficacy of a myriad of currently approved drugs that may trigger arrhythmias.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Canal de Potasio KCNQ1/genética , Miocitos Cardíacos/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Potenciales de Acción/fisiología , Sustitución de Aminoácidos , Animales , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Calcio/metabolismo , Perros , Furanos/farmacología , Expresión Génica , Cobayas , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Humanos , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/metabolismo , Moxifloxacino/farmacología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Fenetilaminas/farmacología , Potasio/metabolismo , Cultivo Primario de Células , Piridinas/farmacología , Pirimidinas/farmacología , Sodio/metabolismo , Sulfonamidas/farmacología , Transgenes , Xenopus laevis
2.
Proteomics ; 23(17): e2200323, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37365936

RESUMEN

Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non-physiological complexes. The non-physiological complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts, making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein-protein interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological and non-physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups, and a cross-validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94, respectively, outperforming individual scores developed by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with significantly higher accuracy than the non-physiological set, lending support to the reliability of our benchmark dataset annotations. Optimizing the combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising strategy.


Asunto(s)
Proteínas , Reproducibilidad de los Resultados , Proteínas/metabolismo , Unión Proteica
3.
Proteins ; 91(12): 1829-1836, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37283068

RESUMEN

Critical Assessment of Structure Prediction 15 (CASP15) added a new category of ligand prediction to promote the development of protein/RNA-ligand modeling methods, which have become important tools in modern drug discovery. A total of 22 targets were released, including 18 protein-ligand targets and 4 RNA-ligand targets. We applied our recently developed template-guided method to the protein-ligand complex structure predictions. The method combined a physicochemical, molecular docking method, and a bioinformatics-based ligand similarity method. The Protein Data Bank was scanned for template structures containing the target protein, homologous proteins, or proteins sharing a similar fold with the target protein. The binding modes of the co-bound ligands in the template structures were used to guide the complex structure prediction for the target. The CASP assessment results show that the overall performance of our method was ranked second when the top predicted model was considered for each target. Here, we analyzed our predictions in detail, and discussed the challenges including protein conformational changes, large and flexible ligands, and multiple diverse ligands in a binding pocket.


Asunto(s)
Proteínas , ARN , Sitios de Unión , Simulación del Acoplamiento Molecular , Ligandos , Unión Proteica , Proteínas/química , ARN/metabolismo , Conformación Proteica
4.
Pharm Biol ; 61(1): 1120-1134, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37477949

RESUMEN

CONTEXT: Qi Teng Xiao Zhuo granule (QTXZG) is a traditional Chinese medicine (TCM) used for therapeutic effects on chronic glomerulonephritis (CGN). However, the underlying mechanism remains unclear. OBJECTIVE: To investigate the molecular mechanism of QTXZG on CGN by proteomics. MATERIALS AND METHODS: The CGN model was induced in Sprague-Dawley rats by injecting adriamycin (3.5 mg/kg, Day 1; 3.0 mg/kg, Day 14) twice through the tail vein. Urine samples were collected on the 21st day; and the rats divided randomly into control, adriamycin, QTXZG administration groups. Rats in the QTXZG group received QTXZG (10.8 g/kg); control and adriamycin groups were given physiological saline once per day for 30 days. Proteomics was applied to identify the candidate proteins combined with autophagy database and verified by immunofluorescence (IF) and western blots (WB). RESULTS: 278 differentially expressed proteins (DEPs) were identified based on proteomics and Rab7 was screened as an autophagy protein biomarker. In vitro cell experiments, we found that QTXZG (20%, IC50 = 23.47%) could decrease the expression of NLRP3, Caspase-1, IL-18, IL-1ß, while increasing the expression of Pink1, Parkin, Rab7, Podocalyxin. The cell apoptosis rate increased from 6.68 ± 0.07 to 11.03 ± 0.36%. Overexpression of Rab7 resulted in an increase in autophagy relevant protein expression. DISCUSSION AND CONCLUSION: TCM CGN-regulating herbs (QTXZG) can exert therapeutic effects by affecting the Rab7/Pink1/Parkin pathway to promote mitochondrial autophagy. New breakthroughs in targeted Rab7 may eventually enable such applications.


Asunto(s)
Glomerulonefritis , Ratas , Animales , Ratas Sprague-Dawley , Glomerulonefritis/tratamiento farmacológico , Autofagia , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/farmacología , Ubiquitina-Proteína Ligasas/uso terapéutico , Enfermedad Crónica , Proteínas Quinasas/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico
5.
J Chem Inf Model ; 62(1): 27-39, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34931833

RESUMEN

Predicting protein-peptide complex structures is crucial to the understanding of a vast variety of peptide-mediated cellular processes and to peptide-based drug development. Peptide flexibility and binding mode ranking are the two major challenges for protein-peptide complex structure prediction. Peptides are highly flexible molecules, and therefore, brute-force modeling of peptide conformations of interest in protein-peptide docking is beyond current computing power. Inspired by the fact that the protein-peptide binding process is like protein folding, we developed a novel strategy, named MDockPeP2, which tries to address these challenges using physicochemical information embedded in abundant monomeric proteins with an exhaustive search strategy, in combination with an integrated global search and a local flexible minimization method. Only the peptide sequence and the protein crystal structure are required. The method was systemically assessed using a newly constructed structural database of 89 nonredundant protein-peptide complexes with the peptide sequence length ranging from 5 to 29 in which about half of the peptides are longer than 15 residues. MDockPeP2 yielded a total success rate of 58.4% (70.8, 79.8%) for the bound docking (i.e., with the bound receptor and fully flexible peptides) and 19.0% (44.8, 70.7%) for the challenging unbound docking when top 10 (100, 1000) models were considered for each prediction. MDockPeP2 achieved significantly higher success rates on two other datasets, peptiDB and LEADS-PEP, which contain only short- and medium-size peptides (≤ 15 residues). For peptiDB, our method obtained a success rate of 62.0% for the bound docking and 35.9% for the unbound docking when the top 10 models were considered. For LEADS-PEP, MDockPeP2 achieved a success rate of 69.8% when the top 10 models were considered. The program is available at https://zougrouptoolkit.missouri.edu/mdockpep2/download.html.


Asunto(s)
Péptidos , Proteínas , Sitios de Unión , Simulación del Acoplamiento Molecular , Péptidos/química , Unión Proteica , Conformación Proteica , Proteínas/química
6.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34830201

RESUMEN

The molecular similarity principle has achieved great successes in the field of drug design/discovery. Existing studies have focused on similar ligands, while the behaviors of dissimilar ligands remain unknown. In this study, we developed an intercomparison strategy in order to compare the binding modes of ligands with different molecular structures. A systematic analysis of a newly constructed protein-ligand complex structure dataset showed that ligands with similar structures tended to share a similar binding mode, which is consistent with the Molecular Similarity Principle. More importantly, the results revealed that dissimilar ligands can also bind in a similar fashion. This finding may open another avenue for drug discovery. Furthermore, a template-guiding method was introduced for predicting protein-ligand complex structures. With the use of dissimilar ligands as templates, our method significantly outperformed the traditional molecular docking methods. The newly developed template-guiding method was further applied to recent CELPP studies.


Asunto(s)
Simulación del Acoplamiento Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Sitios de Unión , Cristalización , Bases de Datos de Proteínas , Diseño de Fármacos/métodos , Descubrimiento de Drogas/métodos , Ligandos , Unión Proteica , Conformación Proteica
7.
Proteins ; 88(8): 1110-1120, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32483825

RESUMEN

CAPRI challenges offer a variety of blind tests for protein-protein interaction prediction. In CAPRI Rounds 38-45, we generated a set of putative binding modes for each target with an FFT-based docking algorithm, and then scored and ranked these binding modes with a proprietary scoring function, ITScorePP. We have also developed a novel web server, Rebipp. The algorithm utilizes information retrieval to identify relevant biological information to significantly reduce the search space for a particular protein. In parallel, we have also constructed a GPU-based docking server, MDockPP, for protein-protein complex structure prediction. Here, the performance of our protocol in CAPRI rounds 38-45 is reported, which include 16 docking and scoring targets. Among them, three targets contain multiple interfaces: Targets 124, 125, and 136 have 2, 4, and 3 interfaces, respectively. In the predictor experiments, we predicted correct binding modes for nine targets, including one high-accuracy interface, six medium-accuracy binding modes, and six acceptable-accuracy binding modes. For the docking server prediction experiments, we predicted correct binding modes for eight targets, including one high-accuracy, three medium-accuracy, and five acceptable-accuracy binding modes.


Asunto(s)
Algoritmos , Simulación del Acoplamiento Molecular , Oligosacáridos/química , Péptidos/química , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Sitios de Unión , Minería de Datos , Humanos , Ligandos , Oligosacáridos/metabolismo , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas/metabolismo , Proyectos de Investigación , Homología Estructural de Proteína , Termodinámica
8.
J Comput Chem ; 41(4): 362-369, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31793016

RESUMEN

We present a nonredundant benchmark, coined PepPro, for testing peptide-protein docking algorithms. Currently, PepPro contains 89 nonredundant experimentally determined peptide-protein complex structures, with peptide sequence lengths ranging from 5 to 30 amino acids. The benchmark covers peptides with distinct secondary structures, including helix, partial helix, a mixture of helix and ß-sheet, ß-sheet formed through binding, ß-sheet formed through self-folding, and coil. In addition, unbound proteins' structures are provided for 58 complexes and can be used for testing the ability of a docking algorithm handling the conformational changes of proteins during the binding process. PepPro should benefit the docking community for the development and improvement of peptide docking algorithms. The benchmark is available at http://zoulab.dalton.missouri.edu/PepPro_benchmark. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Química Computacional , Conjuntos de Datos como Asunto , Péptidos/química , Proteínas/química , Secuencia de Aminoácidos , Simulación del Acoplamiento Molecular , Conformación Proteica
9.
J Comput Aided Mol Des ; 33(3): 367-374, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30689079

RESUMEN

Drug Design Data Resource (D3R) continues to release valuable benchmarking datasets to promote improvement and development of computational methods for new drug discovery. We have developed several methods for protein-ligand binding mode prediction during the participation in the D3R challenges. In the present study, these methods were integrated, automated, and systematically tested using the large-scale data from Continuous Evaluation of Ligand Pose Prediction (CELPP) and a subset of Grand challenge 3 (GC3). The results show that current molecular docking methods benefit from the increasing number of protein-ligand complex structures deposited in Protein Data Bank. Using an appropriate protein structure for docking significantly improves the success rate of the binding mode prediction. The results of our template-based method and docking method are compared and discussed. Our future direction include the combination of these two methods for binding mode prediction.


Asunto(s)
Simulación por Computador , Simulación del Acoplamiento Molecular/métodos , Proteínas/química , Sitios de Unión , Bases de Datos de Proteínas , Ligandos , Unión Proteica , Conformación Proteica , Programas Informáticos , Termodinámica , Flujo de Trabajo
10.
J Comput Chem ; 39(28): 2409-2413, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30368849

RESUMEN

Protein-peptide interactions play a crucial role in a variety of cellular processes. The protein-peptide complex structure is a key to understand the mechanisms underlying protein-peptide interactions and is critical for peptide therapeutic development. We present a user-friendly protein-peptide docking server, MDockPeP. Starting from a peptide sequence and a protein receptor structure, the MDockPeP Server globally docks the all-atom, flexible peptide to the protein receptor. The produced modes are then evaluated with a statistical potential-based scoring function, ITScorePeP. This method was systematically validated using the peptiDB benchmarking database. At least one near-native peptide binding mode was ranked among top 10 (or top 500) in 59% (85%) of the bound cases, and in 40.6% (71.9%) of the challenging unbound cases. The server can be used for both protein-peptide complex structure prediction and initial-stage sampling of the protein-peptide binding modes for other docking or simulation methods. MDockPeP Server is freely available at http://zougrouptoolkit.missouri.edu/mdockpep. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Computadores , Internet , Simulación del Acoplamiento Molecular , Péptidos/química , Proteínas/química , Bases de Datos de Proteínas , Unión Proteica , Conformación Proteica
11.
J Comput Aided Mol Des ; 32(1): 103-111, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29127582

RESUMEN

D3R 2016 Grand Challenge 2 focused on predictions of binding modes and affinities for 102 compounds against the farnesoid X receptor (FXR). In this challenge, two distinct methods, a docking-based method and a template-based method, were employed by our team for the binding mode prediction. For the new template-based method, 3D ligand similarities were calculated for each query compound against the ligands in the co-crystal structures of FXR available in Protein Data Bank. The binding mode was predicted based on the co-crystal protein structure containing the ligand with the best ligand similarity score against the query compound. For the FXR dataset, the template-based method achieved a better performance than the docking-based method on the binding mode prediction. For the binding affinity prediction, an in-house knowledge-based scoring function ITScore2 and MM/PBSA approach were employed. Good performance was achieved for MM/PBSA, whereas the performance of ITScore2 was sensitive to ligand composition, e.g. the percentage of carbon atoms in the compounds. The sensitivity to ligand composition could be a clue for the further improvement of our knowledge-based scoring function.


Asunto(s)
Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Receptores Citoplasmáticos y Nucleares/metabolismo , Sitios de Unión , Diseño Asistido por Computadora , Cristalografía por Rayos X , Bases de Datos de Proteínas , Diseño de Fármacos , Humanos , Ligandos , Unión Proteica , Conformación Proteica , Receptores Citoplasmáticos y Nucleares/química , Termodinámica
12.
Proteins ; 85(3): 424-434, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27802576

RESUMEN

Protein-protein interactions are either through direct contacts between two binding partners or mediated by structural waters. Both direct contacts and water-mediated interactions are crucial to the formation of a protein-protein complex. During the recent CAPRI rounds, a novel parallel searching strategy for predicting water-mediated interactions is introduced into our protein-protein docking method, MDockPP. Briefly, a FFT-based docking algorithm is employed in generating putative binding modes, and an iteratively derived statistical potential-based scoring function, ITScorePP, in conjunction with biological information is used to assess and rank the binding modes. Up to 10 binding modes are selected as the initial protein-protein complex structures for MD simulations in explicit solvent. Water molecules near the interface are clustered based on the snapshots extracted from independent equilibrated trajectories. Then, protein-ligand docking is employed for a parallel search for water molecules near the protein-protein interface. The water molecules generated by ligand docking and the clustered water molecules generated by MD simulations are merged, referred to as the predicted structural water molecules. Here, we report the performance of this protocol for CAPRI rounds 28-29 and 31-35 containing 20 valid docking targets and 11 scoring targets. In the docking experiments, we predicted correct binding modes for nine targets, including one high-accuracy, two medium-accuracy, and six acceptable predictions. Regarding the two targets for the prediction of water-mediated interactions, we achieved models ranked as "excellent" in accordance with the CAPRI evaluation criteria; one of these two targets is considered as a difficult target for structural water prediction. Proteins 2017; 85:424-434. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Simulación del Acoplamiento Molecular/métodos , Proteínas/química , Agua/química , Benchmarking , Sitios de Unión , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proyectos de Investigación , Programas Informáticos , Homología Estructural de Proteína , Termodinámica
13.
J Comput Aided Mol Des ; 31(8): 689-699, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28668990

RESUMEN

The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Péptidos y Proteínas de Señalización Intracelular/química , Simulación del Acoplamiento Molecular , Proteínas Serina-Treonina Quinasas/química , Sitios de Unión , Bases de Datos de Proteínas , Diseño de Fármacos , Humanos , Ligandos , Unión Proteica , Conformación Proteica
14.
Proteins ; 84 Suppl 1: 323-48, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27122118

RESUMEN

We present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from the protein structure prediction and protein-protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12 CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featuring crystal contact-sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction performance was very poor for genuine tetrameric targets, where the inaccuracy of the homology-built subunit models and the smaller pair-wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models of the protein components are not always required to identify their association modes with acceptable accuracy. Proteins 2016; 84(Suppl 1):323-348. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Biología Computacional/estadística & datos numéricos , Modelos Estadísticos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas/química , Programas Informáticos , Algoritmos , Secuencias de Aminoácidos , Bacterias/química , Sitios de Unión , Biología Computacional/métodos , Humanos , Cooperación Internacional , Internet , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Termodinámica
15.
J Comput Chem ; 37(17): 1559-64, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27010673

RESUMEN

Transcription factors (TFs) are the proteins involved in the transcription process, ensuring the correct expression of specific genes. Numerous diseases arise from the dysfunction of specific TFs. In fact, over 30 TFs have been identified as therapeutic targets of about 9% of the approved drugs. In this study, we created a structural database of small molecule-transcription factor (SM-TF) complexes, available online at http://zoulab.dalton.missouri.edu/SM-TF. The 3D structures of the co-bound small molecule and the corresponding binding sites on TFs are provided in the database, serving as a valuable resource to assist structure-based drug design related to TFs. Currently, the SM-TF database contains 934 entries covering 176 TFs from a variety of species. The database is further classified into several subsets by species and organisms. The entries in the SM-TF database are linked to the UniProt database and other sequence-based TF databases. Furthermore, the druggable TFs from human and the corresponding approved drugs are linked to the DrugBank. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Bases de Datos de Proteínas , Factores de Transcripción/química , Sistemas de Liberación de Medicamentos , Humanos , Bibliotecas de Moléculas Pequeñas/química , Factores de Transcripción/metabolismo
16.
Gene ; 916: 148438, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38579905

RESUMEN

AIM: of the study: This study used network pharmacology and the Gene Expression Omnibus (GEO) database to investigate the therapeutic effects of Corbrin capsules on acute kidney injury (AKI)-COVID-19 (coronavirus disease 2019). MATERIALS AND METHODS: The active constituents and specific molecular targets of Corbrin capsules were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Swiss Target Prediction databases. The targets related to AKI and COVID-19 disease were obtained from the Online Mendelian Inheritance in Man (OMIM), GeneCards, and GEO databases. A protein-protein interaction (PPI) network was constructed by utilizing Cytoscape. To enhance the analysis of pathways associated with the pathogenesis of AKI-COVID-19, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Furthermore, immune infiltration analysis was performed by using single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT. Molecular docking was used to assess interactions between differentially expressed genes and active ingredients. Verification was performed by utilizing GEO databases and in vivo assays. RESULTS: This study revealed an overlap of 18 significantly differentially expressed genes between the Corbrin capsules group and the AKI-COVID-19 target group. Analysis of the PPI network identified TP53, JAK2, PIK3CA, PTGS2, KEAP1, and MCL1 as the top six core protein targets with the highest degrees. The results obtained from GO and KEGG analyses demonstrated that the target genes were primarily enriched in the apoptosis and JAK-STAT signaling pathways. Moreover, the analysis of immune infiltration revealed a notable disparity in the percentage of quiescent memory CD4 + T cells. Western blot analyses provided compelling evidence suggesting that the dysregulation of 6 core protein targets could be effectively reversed by Corbrin capsules. CONCLUSION: This study revealed the key components, targets, and pathways involved in treating AKI-related COVID-19 using Corbrin capsules. This study also provided a new understanding of the molecular mechanisms underlying this treatment.


Asunto(s)
Lesión Renal Aguda , Tratamiento Farmacológico de COVID-19 , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/genética , Mapas de Interacción de Proteínas/efectos de los fármacos , Humanos , COVID-19/genética , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Bases de Datos Genéticas , Cápsulas , SARS-CoV-2 , Transducción de Señal/efectos de los fármacos , Ratas , Masculino , Ontología de Genes , Medicina Tradicional China/métodos
17.
Heliyon ; 10(17): e36899, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263055

RESUMEN

Background: The field of gynaecological immunology has increasingly focused on recurrent spontaneous abortion (RSA). The complex mechanisms underlying the interaction between RSA and cancer are not well understood. Methods: Weighted gene coexpression network analysis (WGCNA), single-cell RNA sequencing (scRNA-seq), and machine learning algorithms were used for the analysis of RSA decidua samples to identify the hub genes. The expression and distribution of the hub genes were subsequently investigated via the pancancer database TCGA. A prognostic prediction was made to assess the impact of the hub genes on the cancer response, mutation burden, immune microenvironment, immune checkpoint, and chemotherapy. In vitro assays were performed to determine whether SLC8A1 influences HTR-8/SVneo cell proliferation, apoptosis and the concentration of calcium ions. Results: SLC8A1 was identified as a hub gene within RSA and was highly expressed in uterine corpus endometrial carcinoma (UCEC). The efficacy of SLC8A1 as a predictive marker was substantiated by calibration curves and the concordance index. The mutation rate of SLC8A1 was found to be 6 % on the basis of the waterfall plot. Immune analysis revealed notable differences in the fractions of T cells and macrophages between the high- and low-expression groups. Patients classified in the low-risk group exhibited enhanced responsiveness to osimertinib, dasatinib, and ibrutinib. The results of in vitro experiments revealed that SLC8A1 promotes proliferation and inhibits the apoptosis and concentration of calcium ions in HTR-8/SVneo cells. Conclusion: These findings suggest that SLC8A1 may serve as a promising prognostic biomarker and potential target for immunotherapy in the context of RSA and UCEC.

18.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617336

RESUMEN

Formation of biomolecular condensates can be driven by weak multivalent interactions and emergent polymerization. However, the mechanism of polymerization-mediated condensate formation is less studied. We found lateral root cap cell (LRC)-specific SUPPRESSOR OF RPS4-RLD1 (SRFR1) condensates fine-tune primary root development. Polymerization of the SRFR1 N-terminal domain is required for both LRC condensate formation and optimal root growth. Surprisingly, the first intrinsically disordered region (IDR1) of SRFR1 can be functionally substituted by a specific group of intrinsically disordered proteins known as dehydrins. This finding facilitated the identification of functional segments in the IDR1 of SRFR1, a generalizable strategy to decode unknown IDRs. With this functional information we further improved root growth by modifying the SRFR1 condensation module, providing a strategy to improve plant growth and resilience.

19.
Curr Med Chem ; 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37888817

RESUMEN

Peptide-mediated protein-protein interactions (PPIs) play an important role in various biological processes. The development of peptide-based drugs to modulate PPIs has attracted increasing attention due to the advantages of high specificity and low toxicity. In the development of peptide-based drugs, one of the most important steps is to determine the interaction details between the peptide and the target protein. In addition to experimental methods, recently developed computational methods provide a cost-effective way for studying protein-peptide interactions. In this article, we carefully reviewed recently developed protein-peptide docking methods, which were classified into three groups: template-based docking, template-free docking, and hybrid method. Then, we presented available benchmarking sets and evaluation metrics for assessing protein-peptide docking performance. Furthermore, we discussed the use of molecular dynamics simulations, as well as deep learning approaches in protein-peptide complex prediction.

20.
Nat Commun ; 13(1): 6784, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351900

RESUMEN

BK type Ca2+-activated K+ channels activate in response to both voltage and Ca2+. The membrane-spanning voltage sensor domain (VSD) activation and Ca2+ binding to the cytosolic tail domain (CTD) open the pore across the membrane, but the mechanisms that couple VSD activation and Ca2+ binding to pore opening  are not clear. Here we show that a compound, BC5, identified from in silico screening, interacts with the CTD-VSD interface and specifically modulates the Ca2+ dependent activation mechanism. BC5 activates the channel in the absence of Ca2+ binding but Ca2+ binding inhibits BC5 effects. Thus, BC5 perturbs a pathway that couples Ca2+ binding to pore opening to allosterically affect both, which is further supported by atomistic simulations and mutagenesis. The results suggest that the CTD-VSD interaction makes a major contribution to the mechanism of Ca2+ dependent activation and is an important site for allosteric agonists to modulate BK channel activation.


Asunto(s)
Calcio , Canales de Potasio de Gran Conductancia Activados por el Calcio , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Membrana Celular/metabolismo , Calcio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA