Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(12): e2315707121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38489388

RESUMEN

KCTD10 belongs to the KCTD (potassiumchannel tetramerization domain) family, many members of which are associated with neuropsychiatric disorders. However, the biological function underlying the association with brain disorders remains to be explored. Here, we reveal that Kctd10 is highly expressed in neuronal progenitors and layer V neurons throughout brain development. Kctd10 deficiency triggers abnormal proliferation and differentiation of neuronal progenitors, reduced deep-layer (especially layer V) neurons, increased upper-layer neurons, and lowered brain size. Mechanistically, we screened and identified a unique KCTD10-interacting protein, KCTD13, associated with neurodevelopmental disorders. KCTD10 mediated the ubiquitination-dependent degradation of KCTD13 and KCTD10 ablation resulted in a considerable increase of KCTD13 expression in the developing cortex. KCTD13 overexpression in neuronal progenitors led to reduced proliferation and abnormal cell distribution, mirroring KCTD10 deficiency. Notably, mice with brain-specific Kctd10 knockout exhibited obvious motor deficits. This study uncovers the physiological function of KCTD10 and provides unique insights into the pathogenesis of neurodevelopmental disorders.


Asunto(s)
Encefalopatías , Trastornos del Neurodesarrollo , Canales de Potasio con Entrada de Voltaje , Animales , Ratones , Proteínas/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Trastornos del Neurodesarrollo/genética , Encefalopatías/genética , Neurogénesis/genética , Canales de Potasio con Entrada de Voltaje/metabolismo
2.
EMBO Rep ; 25(7): 2861-2877, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839944

RESUMEN

In developing olfactory bulb (OB), mitral cells (MCs) remodel their dendrites to establish the precise olfactory circuit, and these circuits are critical for individuals to sense odors and elicit behaviors for survival. However, how microtubules (MTs) participate in the process of dendritic remodeling remains elusive. Here, we reveal that calmodulin-regulated spectrin-associated proteins (CAMSAPs), a family of proteins that bind to the minus-end of the noncentrosomal MTs, play a crucial part in the development of MC dendrites. We observed that Camsap2 knockout (KO) males are infertile while the reproductive tract is normal. Further study showed that the infertility was due to the severe defects of mating behavior in male mice. Besides, mice with loss-of-function displayed defects in the sense of smell. Furthermore, we found that the deficiency of CAMSAP2 impairs the classical morphology of MCs, and the CAMSAP2-dependent dendritic remodeling process is responsible for this defect. Thus, our findings demonstrate that CAMSAP2 plays a vital role in regulating the development of MCs.


Asunto(s)
Dendritas , Ratones Noqueados , Proteínas Asociadas a Microtúbulos , Bulbo Olfatorio , Olfato , Animales , Femenino , Masculino , Ratones , Dendritas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Morfogénesis/genética , Bulbo Olfatorio/metabolismo , Olfato/fisiología
3.
Opt Lett ; 49(16): 4717-4720, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146143

RESUMEN

We introduce perfect correlation vortices and show that the degree of coherence of any such vortex at the source is nearly statistically homogeneous and independent of the topological charge of the vortex. We demonstrate that while slowly diffracting in free space, perfect correlation vortices maintain their "perfect" vortex structure; they are capable of preserving said structure even in strong atmospheric turbulence. Structural resilience to diffraction and turbulence sets the discovered perfect vortices apart from their coherent cousins and makes them suitable for free-space optical communications.

4.
Eur J Neurol ; : e16441, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152783

RESUMEN

BACKGROUND AND PURPOSE: Multiple system atrophy (MSA) is a progressive, adult-onset neurodegenerative disorder clinically characterized by combinations of autonomic failure, parkinsonism, cerebellar ataxia and pyramidal signs. Although a few genetic factors have been reported to contribute to the disease, its mutational profiles have not been systemically studied. METHODS: To address the genetic profiles of clinically diagnosed MSA patients, exome sequencing and triplet repeat detection was conducted in 205 MSA patients, including one familial case. The pathogenicity of variants was determined according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. RESULTS: In the familial patient, a novel heterozygous COQ2 pathogenic variant (p.Ala351Thr) was identified in the MSA pedigree. In the sporadic patients, 29 pathogenic variants were revealed in 21 genes, and the PARK7 p.Ala104Thr variant was significantly associated with MSA (p = 0.0018). Moreover, burden tests demonstrated that the pathogenic variants were enriched in cerebellar ataxia-related genes in patients. Furthermore, repeat expansion analyses revealed that two patients carried the pathogenic CAG repeat expansion in the CACNA1A gene (SCA6), one patient carried the (ACAGG)exp/(ACAGG)exp expansion in RFC1 and one carried the GAA-pure expansion in FGF14 gene. CONCLUSION: In conclusion, a novel COQ2 pathogenic variant was identified in a familial MSA patient, and repeat expansions in CACNA1A, RFC1 and FGF14 gene were detected in four sporadic patients. Moreover, a PARK7 variant and the burden of pathogenic variants in cerebellar ataxia-related genes were associated with MSA.

5.
BMC Med Inform Decis Mak ; 24(1): 176, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907208

RESUMEN

BACKGROUND: Patient-reported outcome (PRO) is a distinct and indispensable dimension of clinical characteristics and recent advances have made remote PRO measurement possible. Sex difference in PRO of Parkinson's disease (PD) is hardly extensively researched. METHODS: A smartphone-based self-management platform, offering remote PRO measurement for PD patients, has been developed. A total of 1828 PD patients, including 1001 male patients and 827 female patients, were enrolled and completed their PRO submission through this platform. RESULTS: Sex differences in PROs have been identified. The female group had a significantly lower height, weight, and body mass index (BMI) than the male group (P < 0.001). For motor symptoms, a higher proportion of patients reporting dyskinesia was observed in the female group. For non-motor symptoms, there is a higher percentage (P < 0.001) as well as severity (P = 0.016) of depression in the female group. More male patients reported hyposmia, lisp, drooling, dysuria, frequent urination, hypersexuality, impotence, daytime sleepiness, and apathy than females (P < 0.05). In contrast, more female patients reported headache, palpation, body pain, anorexia, nausea, urinal incontinence, anxiety, insomnia (P < 0.05) than males. CONCLUSIONS: We provide evidence for sex differences in PD through the data collected from our platform. These results highlighted the importance of gender in clinical decision-making, and also support the feasibility of remote PRO measurement through a smartphone-based self-management platform in patients with PD.


Asunto(s)
Enfermedad de Parkinson , Medición de Resultados Informados por el Paciente , Automanejo , Teléfono Inteligente , Humanos , Enfermedad de Parkinson/terapia , Masculino , Femenino , Proyectos Piloto , Estudios Transversales , Persona de Mediana Edad , Anciano , Factores Sexuales , Aplicaciones Móviles
6.
Angew Chem Int Ed Engl ; : e202409609, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976376

RESUMEN

Antimony selenosulfide (Sb2(S,Se)3), featuring large absorption coefficient, excellent crystal structure stability, benign non-toxic characteristic, outstanding humidity and ultraviolet tolerability, has recently attracted enormous attention and research interest regarding its photoelectric conversion properties. However, the open-circuit voltage (Voc) for Sb2(S,Se)3-based photovoltaic devices is relatively low, especially for the device with a high power conversion efficiency (η). Herein, an innovative Se-elemental concentration gradient regulation strategy has been exploited to produce high-quality Sb2(S,Se)3 films on TiO2/CdS substrates through a thioacetamide(TA)-synergistic dual-sulfur source hydrothermal-processed method. The Se-elemental gradient distribution produces a favorable energy band structure, which suppresses the energy level barriers for hole transport and enhances the driving force for electron transport in Sb2(S,Se)3 film. This facilitates efficient charge transport/separation of photogenerated carriers and boosts significantly the Voc of Sb2(S,Se)3 photovoltaic devices. The champion TA-Sb2(S,Se)3 planar heterojunction (PHJ) solar cell displays an considerable η of 9.28% accompanied by an exciting Voc rising to 0.70 V that is currently the highest among Sb2(S,Se)3-based solar cells with efficiencies exceeding 9.0%. This research is anticipated to contribute to the preparation of high-quality Sb2(S,Se)3 thin film and the achievement of efficient inorganic Sb2(S,Se)3 PHJ photovoltaic device.

7.
iScience ; 27(3): 109180, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38439956

RESUMEN

Mutations of TRAPPC12 are associated with progressive childhood encephalopathy including abnormal white matter. However, the underlying pathogenesis is still unclear. Here, we found that Trappc12 deficiency in CG4 and oligodendrocyte progenitor cells (OPCs) affects their differentiation and maturation. In addition, TRAPPC12 interacts with Mea6/cTAGE5, and Mea6/cTAGE5 ablation in OPCs affects their proliferation and differentiation, leading to marked hypomyelination, compromised synaptic functionality, and aberrant behaviors in mice. We reveal that TRAPPC12 is associated with COPII components at ER exit site, and Mea6/cTAGE5 cKO disrupts the trafficking pathway by affecting the distribution and/or expression of TRAPPC12, SEC13, SEC31A, and SAR1. Moreover, we observed marked disturbances in the secretion of pleiotrophin (PTN) in Mea6-deficient OPCs. Notably, exogenous PTN supplementation ameliorated the differentiation deficits of these OPCs. Collectively, our findings indicate that the association between TRAPPC12 and MEA6 is important for cargo trafficking and white matter development.

8.
NPJ Parkinsons Dis ; 10(1): 111, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834646

RESUMEN

A new Parkinson's disease (PD) subtyping model has been recently proposed based on the initial location of α-synuclein inclusions, which divides PD patients into the brain-first subtype and the body-first subtype. Premotor RBD has proven to be a predictive marker of the body-first subtype. We found compared to PD patients without possible RBD (PDpRBD-, representing the brain-first subtype), PD patients with possible premotor RBD (PDpRBD+, representing the body-first subtype) had lower Movement Disorders Society Unified Parkinson's Disease Rating Scale part III (MDS UPDRS-III) score (p = 0.022) at baseline but presented a faster progression rate (p = 0.009) in MDS UPDRS-III score longitudinally. The above finding indicates the body-first subtype exhibited a faster disease progression in motor impairments compared to the brain-first subtype and further validates the proposed subtyping model.

9.
Heliyon ; 10(8): e29634, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38681625

RESUMEN

There are several parameters in designing undersurface vessel forms, the most important of which is the hull's total strength, which includes the strength of the hull and its attachments. According to studies, 70 % of the total strength of the vessels is related to their hull only without attachments. The hull has three major parts: nose, cylinder, and heel. The advanced vessels' architecture has a parallel shape (cylinder shape). This cylindrical part is important in examining the used volume by pilots and vessel equipment. This paper uses the CFD method to examine the vessel's shape, and the resistive force and volumetric-aqueous efficiencies are extracted. An optimum profile is extracted by the values of resistive force and volumetric-aqueous efficiencies. The results indicate the significant effect of the hull form on the hydro-acoustic noise of the hull. In other words, by optimizing the hydrodynamic form of the hull, the noise propagation can be reduced as much as possible. Also, the linear slope of the optimized hull is not optimized more than the hull. This means that the turbulence caused by the optimized hull has a higher damping potential.

10.
Heliyon ; 10(5): e26588, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434286

RESUMEN

Introduction: Multiple system atrophy (MSA) is a rapidly progressing neurodegenerative disorder. Although diverse biomarkers have been established for Parkinson's disease (PD), no widely accepted markers have been identified in MSA. Pyruvate and lactate are the end-product of glycolysis and crucial for brain metabolism. However, their correlation with MSA remains unclear. Moreover, it is elusive how lifestyles modify these metabolites. Methods: To investigate the correlation and diagnostic value of plasma pyruvate and lactate levels in MSA and PD. Moreover, we explored how lifestyle-related metabolites interact with these metabolites in determining the disease risk. We assayed the 3 metabolites in pyruvate/lactate and 6 in the tea/coffee metabolic pathways by targeted mass spectrometry and evaluate their interactions and performance in diagnosis and differentiation between MSA and PD. Results: We found that 7 metabolites were significantly different between MSA, PD and healthy controls (HCs). Particularly, pyruvate was increased in PD while significantly decreased in MSA patients. Moreover, the tea/coffee metabolites were negatively associated with the pyruvate level in HCs, but not in MSA and PD patients. Using machine-learning models, we showed that the combination of pyruvate and tea/coffee metabolites diagnosed MSA (AUC = 0.878) and PD (AUC = 0.833) with good performance. Additionally, pyruvate had good performance in distinguishing MSA from PD (AUC = 0.860), and the differentiation increased (AUC = 0.922) when combined with theanine and 1,3-dimethyluric acid. Conclusions: This study demonstrates that pyruvate correlates reversely with MSA and PD, and may play distinct roles in their pathogenesis, which can be modified by lifestyle-related tea/coffee metabolites.

11.
Cell Discov ; 10(1): 22, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409116

RESUMEN

Human cerebellum encompasses numerous neurons, exhibiting a distinct developmental paradigm from cerebrum. Here we conducted scRNA-seq, scATAC-seq and spatial transcriptomic analyses of fetal samples from gestational week (GW) 13 to 18 to explore the emergence of cellular diversity and developmental programs in the developing human cerebellum. We identified transitory granule cell progenitors that are conserved across species. Special patterns in both granule cells and Purkinje cells were dissected multidimensionally. Species-specific gene expression patterns of cerebellar lobes were characterized and we found that PARM1 exhibited inconsistent distribution in human and mouse granule cells. A novel cluster of potential neuroepithelium at the rhombic lip was identified. We also resolved various subtypes of Purkinje cells and unipolar brush cells and revealed gene regulatory networks controlling their diversification. Therefore, our study offers a valuable multi-omics landscape of human fetal cerebellum and advances our understanding of development and spatial organization of human cerebellum.

12.
Cell Rep ; 43(3): 113818, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38402586

RESUMEN

Intricate cerebral cortex formation is orchestrated by the precise behavior and division dynamics of radial glial cells (RGCs). Endocytosis functions in the recycling and remodeling of adherens junctions (AJs) in response to changes in RGC activity and function. Here, we show that conditional disruption of ubiquitin-associated protein 1 (UBAP1), a component of endosomal sorting complex required for transport (ESCRT), causes severe brain dysplasia and prenatal ventriculomegaly. UBAP1 depletion disrupts the AJs and polarity of RGCs, leading to failure of apically directed interkinetic nuclear migration. Accordingly, UBAP1 knockout or knockdown results in reduced proliferation and precocious differentiation of neural progenitor cells. Mechanistically, UBAP1 regulates the expression and surface localization of cell adhesion molecules, and ß-catenin over-expression significantly rescues the phenotypes of Ubap1 knockdown in vivo. Our study reveals a critical physiological role of the ESCRT machinery in cortical neurogenesis by regulating AJs of RGCs.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Células Ependimogliales , Femenino , Embarazo , Humanos , Células Ependimogliales/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ubiquitina/metabolismo , Uniones Adherentes/metabolismo , Corteza Cerebral/metabolismo , Neurogénesis , Proteínas Portadoras/metabolismo
13.
Nat Commun ; 15(1): 2189, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467605

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. To identify additional genetic factors, we analyzed exome sequences in a large cohort of Chinese ALS patients and found a homozygous variant (p.L700P) in PCDHA9 in three unrelated patients. We generated Pcdhα9 mutant mice harboring either orthologous point mutation or deletion mutation. These mice develop progressive spinal motor loss, muscle atrophy, and structural/functional abnormalities of the neuromuscular junction, leading to paralysis and early lethality. TDP-43 pathology is detected in the spinal motor neurons of aged mutant mice. Mechanistically, we demonstrate that Pcdha9 mutation causes aberrant activation of FAK and PYK2 in aging spinal cord, and dramatically reduced NKA-α1 expression in motor neurons. Our single nucleus multi-omics analysis reveals disturbed signaling involved in cell adhesion, ion transport, synapse organization, and neuronal survival in aged mutant mice. Together, our results present PCDHA9 as a potential ALS gene and provide insights into its pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Ratones , Animales , Anciano , Esclerosis Amiotrófica Lateral/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Ratones Transgénicos , Neuronas Motoras/metabolismo , Médula Espinal/metabolismo
14.
Front Vet Sci ; 11: 1383801, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601914

RESUMEN

The objective of this study was to investigate the protective effect of Crataegus pinnatifida polysaccharide (CPP) on non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD) in mice. The findings demonstrated that CPP improved free fatty acid (FFA)-induced lipid accumulation in HepG2 cells and effectively reduced liver steatosis and epididymal fat weight in NAFLD mice, as well as decreased serum levels of TG, TC, AST, ALT, and LDL-C. Furthermore, CPP exhibited inhibitory effects on the expression of fatty acid synthesis genes FASN and ACC while activating the expression of fatty acid oxidation genes CPT1A and PPARα. Additionally, CPP reversed disturbances in intestinal microbiota composition caused by HFD consumption. CPP decreased the firmicutes/Bacteroidetes ratio, increased Akkermansia abundance, and elevated levels of total short-chain fatty acid (SCFA) content specifically butyric acid and acetic acid. Our results concluded that CPP may intervene in the development of NAFLD by regulating of intes-tinal microbiota imbalance and SCFAs production. Our study highlights that CPP has a potential to modulate lipid-related pathways via alterations to gut microbiome composition thereby ex-erting inhibitory effects on obesity and NAFLD development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA