Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Chem Biol ; 18(11): 1196-1203, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35982227

RESUMEN

Adhesion G protein-coupled receptors are elusive in terms of their structural information and ligands. Here, we solved the cryogenic-electron microscopy (cryo-EM) structure of apo-ADGRG2, an essential membrane receptor for maintaining male fertility, in complex with a Gs trimer. Whereas the formations of two kinks were determinants of the active state, identification of a potential ligand-binding pocket in ADGRG2 facilitated the screening and identification of dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate and deoxycorticosterone as potential ligands of ADGRG2. The cryo-EM structures of DHEA-ADGRG2-Gs provided interaction details for DHEA within the seven transmembrane domains of ADGRG2. Collectively, our data provide a structural basis for the activation and signaling of ADGRG2, as well as characterization of steroid hormones as ADGRG2 ligands, which might be used as useful tools for further functional studies of the orphan ADGRG2.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Humanos , Masculino , Microscopía por Crioelectrón , Sulfato de Deshidroepiandrosterona , Desoxicorticosterona , Ligandos , Receptores Acoplados a Proteínas G/química
2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(3): 874-9, 2016 Mar.
Artículo en Zh | MEDLINE | ID: mdl-27400541

RESUMEN

Optical micro-ring resonator prepared on Silicon-On-Insulator (SOI) has high sensitivity, small size and low mode volume. Its high sensitivity has been widely applied to the optical information transmission and inertial navigation devices field, while it is rarely applied in the testing of Mechanics. This paper presents a cantilever stress/strain gauge with an optical microring resonator. It is proposed the using of radius change of ring waveguide for the sensing element. When external stress is put on the structure, the radius of the SOI ring waveguide will be subjected to variation, which causes the optical resonant parameters to change. This ultimately leads to a red-shift of resonant spectrum, and shows the excellent characteristics of the structure's stress/strain sensitivity. Designed a bicyclic cascade embedded optical micro-cavity structure, which was prepared by employing MEMS lithography and ICP etching process. The characteristic of stress/strain sensitivity was calculated theoretically. Two values of 0.185 pm x kPa(-1) and 18.04 pm x microstrain(-1) were obtained experimentally, which also was verified by theoretical simulations. Comparing with the single-loop micro-cavity structure, its measuring range and stress sensitivity increased by nearly 50.3%, 10.6%, respectively. This paper provides a new method to develop micro-opto-electromechanical system (MOEMS) sensors.

3.
Sensors (Basel) ; 15(11): 29183-91, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26610491

RESUMEN

A refractive index sensor composed of two straight metal-insulator-metal waveguides and a ring resonator is presented. One end of each straight waveguide is sealed and the other end acts as port. The transmission spectrum and magnetic field distribution of this sensor structure are simulated using finite-difference time-domain method (FDTD). The results show that an asymmetric line shape is observed in the transmission spectrum, and that the transmission spectrum shows a filter-like behavior. The quality factor and sensitivity are taken to characterize its sensing performance and filter properties. How structural parameters affect the sensing performance and filter properties is also studied.

4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(12): 3529-33, 2015 Dec.
Artículo en Zh | MEDLINE | ID: mdl-26964244

RESUMEN

Because traditional method for tunable grating fabrication has harsh process condition, complex fabrication process, high costs and long cycle. Proposed a low-cost, simple process, can be prepared in large quantities gradient grating process method, based on self-assembly process using the rigid film/flexible substrate and oxygen plasma method prepared a micron scale gradient grating. Use of plasma free time controllability and excellent elastic of PDMS obtained the desired grating. First, polyethylene terephthalate (PET) was spin-coated layer of polydimethylsiloxane (PDMS) film on the thin film, two-layer film to be cured PDMS film after bending and treated with an oxygen plasma (plasma), in generating a rigid surface oxide layer, With flexible PET rigid layer applied uniform stress, when the stress exceeds the critical value, the PDMS substrate to form a self-assembled structure grating fold. Due to changes in prestressed bending, so the PDMS film formation period and height of the grating stepped fold, which is graded grating. Using visible light as the performance test light source for graded grating and selecting first-order diffracted as the detection target. The authors can see the grating has a good diffraction effects and achieves good spectral effect. Experiments show that graded grating has obvious diffraction grating, and the diffraction angle varies significantly, and can be widely used for stress measurement, the flexible gradient grating prepared by this method can also be used to detect changes in the stress strain as a miniature device, the future is expected for miniature spectrometer, scanners, optical communications and other fields.

5.
Opt Express ; 19(7): 5753-9, 2011 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-21451600

RESUMEN

We propose and realize a novel packaged microsphere-taper coupling structure (PMTCS) with a high quality factor (Q) up to 5×10(6) by using the low refractive index (RI) ultraviolet (UV) glue as the coating material. The optical loss of the PMTCS is analyzed experimentally and theoretically, which indicate that the Q is limited by the glue absorption and the radiation loss. Moreover, to verify the practicability of the PMTCS, thermal sensing experiments are carried out, showing the excellent convenience and anti-jamming ability of the PMTCS with a high temperature resolution of 1.1×10(-3) ◦C. The experiments also demonstrate that the PMTCS holds predominant advantages, such as the robustness, mobility, isolation, and the PMTCS can maintain the high Q for a long time. The above advantages make the PMTCS strikingly attractive and potential in the fiber-integrated sensors and laser.


Asunto(s)
Refractometría/instrumentación , Dióxido de Silicio/efectos de la radiación , Termografía/instrumentación , Transductores , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Microesferas , Dispersión de Radiación
6.
Sensors (Basel) ; 9(9): 6823-34, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-22423200

RESUMEN

The MEMS vector hydrophone is a novel acoustic sensor with a "four-beam-cilia" structure. Based on the MEMS vector hydrophone with this structure, the paper studies the method of estimated direction of arrival (DOA). According to various research papers, many algorithms can be applied to vector hydrophones. The beam-forming approach and bar graph approach are described in detail. Laboratory tests by means of the a standing-wave tube are performed to validate the theoretical results. Both the theoretical analysis and the results of tests prove that the proposed MEMS vector hydrophone possesses the desired directional function.

7.
Nanoscale Res Lett ; 8(1): 532, 2013 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-24350866

RESUMEN

In this paper, the potential sensitivity in Kelvin probe force microscopy (KPFM) was investigated in frequency modulation (FM) and heterodyne amplitude modulation (AM) modes. We showed theoretically that the minimum detectable contact potential difference (CPD) in FM-KPFM is higher than in heterodyne AM-KPFM. We experimentally confirmed that the signal-to-noise ratio in FM-KPFM is lower than that in heterodyne AM-KPFM, which is due to the higher minimum detectable CPD dependence in FM-KPFM. We also compared the corrugations in the local contact potential difference on the surface of Ge (001), which shows atomic resolution in heterodyne AM-KPFM. In contrast, atomic resolution cannot be obtained in FM-KPFM under the same experimental conditions. The higher potential resolution in heterodyne AM-KPFM was attributed to the lower crosstalk and higher potential sensitivity between topographic and potential measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA