Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2406027, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39420708

RESUMEN

A new sulfur-containing carbon nanospheres encapsulated with vanadium oxide (V@SCN) is synthesized through a one-pot oxidation polymerization and then carbonization method. The prepared V@SCNs exhibit good dispersibility as a lubricant additive, which is owing to the inherited lipophilic organic functional groups in the sulfur-containing carbon shell derived from the carbonization of polythiophene. The agglomeration and precipitation of metals in the base oil are also avoided through the encapsulation of lipophilic carbon shells. The stress and thermal simulation results show that the vanadium oxide core bestows upon the carbon nanospheres enhanced load resistance and superior thermal conductivity, which contributes to their excellent tribological properties. Introducing 0.04M-V@SCN to the base oil leads to favorable tribological characteristics, such as a fourfold rise in extreme pressure capacity from 250 to 1050N, a reduction in friction coefficient from 0.2 to ≈0.1, and a substantial decrease in wear by 90.2%. The lubrication mechanism of V@SCNs as lubricant additive involves the formation of a robust protective film on the friction pair, which is formed via complex physical and chemical reactions with the friction pair during friction.

2.
Small ; 20(29): e2312010, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38368271

RESUMEN

The dispersion stability of nano-lubricating additives is crucial for the shelf life of lubricant and its practical applications. Nitrogen-sulfur co-doped carbon dots (N,S@CDs) via a one-step hydrothermal method with nitropyrene and thiourea as raw materials are hereby presented. The N and S elements are selectively distributed throughout the entire carbon skeleton with a doping amount of 22.6 at%. The as-synthesized N,S@CDs exhibit excellent dispersion stability in PEG200 and maintain stability for over one year. The experiment results indicate that N,S@CDs significantly improve the anti-wear and friction reduction properties of PEG200, while the friction coefficient is reduced from 0.25 to 0.09 with 1.5 wt% N,S@CDs addition, and the wear volume, depth, and width are reduced by 68%, 52%, and 57%, respectively. The good lubrication performance is attributed to N,S@CDs excellent dispersion stability, enhanced filling and polishing effects, and complex tribochemical reactions caused by heteroatom doping to form a stable protective film on the worn surface. Furthermore, the as-prepared N,S@CDs exhibit intrinsic fluorescence intensity in PEG200 with the photoluminescence quantum yield (PLQY) of 12.5% and remain fluorescent stable during the long-term friction process, therefore the N,S@CDs have a potential application prospect in non-destructive detection of oil leakage via fluorescence labeling method.

3.
Small ; 20(29): e2311876, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38403845

RESUMEN

Traditional laser-assisted method (top-down synthesis strategy) is applied in the preparation of carbon dots (CDs) by cutting larger carbon materials, which requires harsh conditions, and the size distribution of the CDs is seldom monodisperse. In this work, heteroatom-doped CDs, represented by N,S co-doped CDs (N,S-CDs), can be prepared successfully by pulsed laser irradiation of heterocyclic aromatic hydrocarbons-based small molecule compound solution. The friction coefficient (COF) of base oil PAO decreases from 0.650 to 0.093, and the wear volume reduces by 92.0% accompanied by 1 wt.% N,S-CDs addition, while the load-bearing capacity is improved from 100 to 950 N. The excellent lubrication performance is mainly attributed to the formation of a robust tribofilm via a tribochemical reaction between N,S-CDs and friction pairs, and the N,S-CDs can play a mending effect and polishing effect for worn surfaces. Furthermore, the lubricant containing heteroatom doped CDs are capable of being prepared in situ via pulsed laser irradiation of heterocyclic aromatic hydrocarbons in base oil, which can avoid the redispersed problem of nano-additive in base oil to maintain long-term dispersion, with COF of 0.103 and low wear volume ≈1.99 × 105 µm3 (76.9% reduction) even after standing for 9 months.

4.
Langmuir ; 40(8): 4373-4381, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38359406

RESUMEN

In this work, the functionalized covalent organic framework (COF) was prepared via a convenient ball milling process. The aldehyde group terminated COF-F reacted with amino thiadiazole in the ball milling jar under mechanical forces; hence, the thiadiazole functionalized COF-F was obtained and denoted as Thdz@COF-F. The as-prepared Thdz@COF-F serves as an oil-based lubricant additive and exhibits remarkable tribological properties, which can reduce the average friction coefficient of base oil from 0.169 to 0.102 and decrease the wear volume by 87.0%. The antifriction and antiwear performances are mainly due to the repairing effect of Thdz@COF-F nanoparticles and the protective tribo-film that averts the direct contact of friction pairs. In addition, through the ball milling method, triazole and thiazole functionalized COF-F were also prepared and represented good lubrication performance, demonstrating the feasibility of this mechanochemical synthesis method for functionalized COFs.

5.
Langmuir ; 40(42): 22159-22167, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39378239

RESUMEN

In previous reports, covalent organic frameworks (COFs) have demonstrated significant potential as lubricant additives. Herein, we embedded Ag nanoparticles in the DT-COF (polycondensation polymer of 2,5-dihydroxyterephthalaldehyde and 4,4',4″-(1,3,5-triazine-2,4,6-triyl) trianiline) matrix via the ball milling method and utilized this composite (Ag@DT-COF) as an additive for supermolecule oil gel. The low molecular weight gelator effectively mitigates the dispersion challenges of COFs in lubricant oil, while the embedded Ag nanoparticles enhance the repairing effect and antipressure performance of the lubricant. The resulting Ag@DT-COF gel exhibits a reduction in the average friction coefficient and wear volume of base oil by 46.0% and 87.5%, respectively, and increases the load-carrying capacity to 750 N. The remarkable tribological properties are attributed to the easy adsorption of DT-COF, antiwear characteristic of Ag nanoparticles, and the gelator that ensures the long-term stability of oil gel.

6.
ACS Appl Mater Interfaces ; 16(30): 39896-39905, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39013120

RESUMEN

The dispersion stability of nanomaterials in lubricants significantly influences tribological performance, yet their addition as lubricant additives often presents challenges in secondary dispersion. Here, we present a straightforward method for in situ preparation of N,S-codoped CDs (N,S-CDs)-based lubricants using heterocyclic aromatic hydrocarbons containing N/S elements in poly(ethylene glycol) (PEG) base oil by a directional ultrasound strategy. Two types of N,S-CDs were successfully prepared via the directional ultrasound treatment of PEG with benzothiazole (BTA) and benzothiadiazole (BTH) separately. The resultant N,S-CDs have a uniform distribution of N and S elements and maintain good colloidal dispersion stability in PEG even after 9 months of storage. The N,S-CDs can enter the surface gap of the friction pairs and then induce a tribochemical reaction. Benefiting from the synergistic effect of N and S activating elements, a robust and stable protective film consisting of iron sulfides, iron oxides, carbon nitrides, and amorphous carbonaceous compounds is formed, thus endowing N,S-CDs-based lubricants with improved antiwear and friction-reducing performance. Compared with pure PEG, the coefficient of friction (COF) of the N,S-CDs(BTH)-based lubricant decreased to 0.108 from 0.292, accompanied by a 91.2% reduction in wear volume, and the maximum load carrying capacity increased to 450 from 150 N.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA