Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(3): e17239, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38500015

RESUMEN

Dissimilatory iron reduction (DIR) can drive the release of organic carbon (OC) as carbon dioxide (CO2 ) by mediating electron transfer between organic compounds and microbes. However, DIR is also crucial for carbon sequestration, which can affect inorganic-carbon redistribution via iron abiotic-phase transformation. The formation conditions of modern carbonate-bearing iron minerals (ICFe ) and their potential as a CO2 sink are still unclear. A natural environment with modern ICFe , such as karst lake sediment, could be a good analog to explore the regulation of microbial iron reduction and sequential mineral formation. We find that high porosity is conducive to electron transport and dissimilatory iron-reducing bacteria activity, which can increase the iron reduction rate. The iron-rich environment with high calcium and OC can form a large sediment pore structure to support rapid DIR, which is conducive to the formation and growth of ICFe . Our results further demonstrate that the minimum DIR threshold suitable for ICFe formation is 6.65 µmol g-1 dw day-1 . DIR is the dominant pathway (average 66.93%) of organic anaerobic mineralization, and the abiotic-phase transformation of Fe2+ reduces CO2 emissions by ~41.79%. Our findings indicate that as part of the carbon cycle, DIR not only drives mineralization reactions but also traps carbon, increasing the stability of carbon sinks. Considering the wide geographic distribution of DIR and ICFe , our findings suggest that the "iron mesh" effect may become an increasingly important vector of carbon sequestration.


Asunto(s)
Secuestro de Carbono , Hierro , Hierro/química , Hierro/metabolismo , Dióxido de Carbono , Oxidación-Reducción , Ciclo del Carbono , Compuestos Férricos/metabolismo
2.
ISME Commun ; 4(1): ycae032, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38524764

RESUMEN

Methane (CH4), an important greenhouse gas, significantly impacts the local and global climate. Our study focused on the composition and activity of methanotrophs residing in the lakes on the Tibetan Plateau, a hotspot for climate change research. Based on the field survey, the family Methylomonadaceae had a much higher relative abundance in freshwater lakes than in brackish and saline lakes, accounting for ~92% of total aerobic methanotrophs. Using the microcosm sediment incubation with 13CH4 followed by high throughput sequencing and metagenomic analysis, we further demonstrated that the family Methylomonadaceae was actively oxidizing CH4. Moreover, various methylotrophs, such as the genera Methylotenera and Methylophilus, were detected in the 13C-labeled DNAs, which suggested their participation in CH4-carbon sequential assimilation. The presence of CH4 metabolism, such as the tetrahydromethanopterin and the ribulose monophosphate pathways, was identified in the metagenome-assembled genomes of the family Methylomonadaceae. Furthermore, they had the potential to adapt to oxygen-deficient conditions and utilize multiple electron acceptors, such as metal oxides (Fe3+), nitrate, and nitrite, for survival in the Tibet lakes. Our findings highlighted the predominance of Methylomonadaceae and the associated microbes as active CH4 consumers, potentially regulating the CH4 emissions in the Tibet freshwater lakes. These insights contributed to understanding the plateau carbon cycle and emphasized the significance of methanotrophs in mitigating climate change.

3.
Water Res ; 254: 121420, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492478

RESUMEN

Global warming is leading to extended stratification in deep lakes, which may exacerbate phosphorus (P) limitation in the upper waters. Conversion of labile dissolved organic P (DOP) is a possible adaptive strategy to maintain primary production. To test this, the spatiotemporal distributions of various soluble P fractions and phosphomonesterase (PME)/phosphodiesterase (PDE) activities were investigated in Lake Fuxian during the stratification period and the transition capacity of organic P and its impact on primary productivity were evaluated. The results indicated that the DOP concentration (mean 0.20 ± 0.05 µmol L-1) was significantly higher than that of dissolved inorganic P (DIP) (mean 0.08 ± 0.03 µmol L-1) in the epilimnion and metalimnion, which were predominantly composed of orthophosphate monoester (monoester-P) and orthophosphate diesters (diester-P). The low ratio of diester-P / monoester-P and high activities of PME and PDE indicate DOP mineralization in the epilimnion and metalimnion. We detected a DIP threshold of approximately 0.19 µmol L-1, corresponding to the highest total PME activity in the lake. Meta-analysis further demonstrated that DIP thresholds of PME activities were prevalent in oligotrophic (0.19 µmol L-1) and mesotrophic (0.74 µmol L-1) inland waters. In contrast to the phosphate-sensitive phosphatase PME, dissolved PDE was expressed independent of phosphate availability and its activity invariably correlated with chlorophyll a, suggesting the involvement of phytoplankton in DOP utilization. This study provides important field evidence for the DOP transformation processes and the strategy for maintaining primary productivity in P-deficient scenarios, which contributes to the understanding of P cycles and the mechanisms of system adaptation to future long-term P limitations in stratified waters.


Asunto(s)
Lagos , Fósforo , Clorofila A , Fosfatos , Fitoplancton
4.
Sci Total Environ ; 912: 169589, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38151123

RESUMEN

Inland waters are important sources of atmospheric methane (CH4), with a major contribution from the CH4 ebullition pathway. However, there is still a lack of CH4 ebullition flux (eFCH4) and their temperature sensitivity (Q10) in shallow lakes, which might lead to large uncertainties in CH4 emission response from aquatic to climate and environmental change. Herein, the magnitude and regulatory of two CH4 pathways (ebullition and diffusion) were studied in subtropical Lake Chaohu, China, using the real-time portable greenhouse gas (GHG) analyzer-floating chamber method at 18 sites over four seasons. eFCH4 (12.06 ± 4.10 nmol m-2 s-1) was the dominant contributing pathway (73.0 %) to the two CH4 emission pathways in Lake Chaohu. The whole-lake mass balance calculation demonstrated that 56.6 % of the CH4 emitted from the sediment escaped through the ebullition pathway. eFCH4 was significantly higher in the western (WL: 16.54 ± 22.22 nmol m-2 s-1) and eastern lake zones (EL: 11.89 ± 15.43 nmol m-2 s-1) than in the middle lake zone (ML: 8.86 ± 13.78 nmol m-2 s-1; p < 0.05) and were significantly higher in the nearshore lake zone (NL: 15.94 ± 19.58 nmol m-2 s-1) than in the pelagic lake zone (PL: 6.64 ± 12.37 nmol m-2 s-1; p < 0.05). eFCH4 was significantly higher in summer (32.12 ± 13.82 nmol m-2 s-1) than in other seasons (p < 0.05). eFCH4 had a strong temperature dependence. Sediment total organic carbon (STOC) is an important ecosystem level Q10 driver of eFCH4. The meta-analysis also verified that across ecosystems the ecosystem-level Q10 of eFCH4 was significantly positively correlated with STOC and latitude (p < 0.05). This study suggests that eFCH4 will become increasingly crucial in shallow lake ecosystems as climate change and human activities increase. The potential increase in ebullition fluxes in high-latitude lakes is of great importance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA