Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 245: 125215, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37285880

RESUMEN

Incidence of various cancers including melanoma continues to rise worldwide. While treatment options have expanded in the recent years, the benefit of these treatments suffer from short period of duration for many patients. Hence, new treatment options are highly desired. Here, we propose a method combining a Dextran/reactive-copolymer/AgNPs nanocomposite and a harmless visible light approach to obtain a plasma substitute carbohydrate-based nanoproduct (D@AgNP) that shows strong antitumor activity. Light-driven polysaccharide-based nanocomposite provided essential conditions for extra small (8-12nm) AgNPs capping with subsequent specific self-assembly into spherical-like cloud nanostructures. Obtained biocompatible D@AgNP are stable over six months at room temperature and demonstrated absorbance peak at 406 nm. New formulated nanoproduct revealed efficient anticancer properties against A375 with IC50 0.0035 mg/mL following 24-h incubation; complete cell death is achieved at 0.001 mg/mL and 0.0005 mg/mL by 24- and 48-h time points, respectively. SEM examination shows that D@AgNP altered the shape of the cell structure and damaged the cell membrane. TEM finding shows that D@AgNP are mostly localized at vesicles such as the endosomes, lysosomes and mitochondria. It is anticipated that the introduced new method serves as the cornerstone for improving the generation of biocompatible hydrophilic carbohydrate-based anticancer drugs.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Nanocompuestos , Humanos , Dextranos , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Luz , Antibacterianos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA