Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Pediatr ; 23(1): 105, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870963

RESUMEN

BACKGROUND: In many organisms, including humans, the timing of cellular processes is regulated by the circadian clock. At the molecular level the core-clock consists of transcriptional-translational-feedback loops including several genes such as BMAL1, CLOCK, PERs and CRYs generating circa 24-h rhythms in the expression of about 40% of our genes across all tissues. Previously these core-clock genes have been shown to be differentially expressed in various cancers. Albeit a significant effect in treatment optimization of chemotherapy timing in paediatric acute lymphoblastic leukaemia has previously been reported, the mechanistic role played by the molecular circadian clock in acute paediatric leukaemia remains elusive. METHODS: To characterize the circadian clock, we will recruit patients with newly diagnosed leukaemia and collect time course saliva and blood samples, as well as a single bone marrow sample. From the blood and bone marrow samples nucleated cells will be isolated and further undergo separation into CD19+ and CD19- cells. qPCR is performed on all samples targeting the core-clock genes including BMAL1, CLOCK, PER2 and CRY1. Resulting data will be analysed for circadian rhythmicity using the RAIN algorithm and harmonic regression. DISCUSSION: To the best of our knowledge this is the first study aiming to characterize the circadian clock in a cohort of paediatric patients with acute leukaemia. In the future we hope to contribute to uncovering further vulnerabilities of cancers associated with the molecular circadian clock and in particular adjust chemotherapy accordingly, leading to more targeted toxicity, and hence decreased systemic toxicities.


Asunto(s)
Relojes Circadianos , Leucemia , Humanos , Niño , Estudios Prospectivos , Factores de Transcripción ARNTL , Proteínas Adaptadoras Transductoras de Señales
2.
PLoS One ; 18(10): e0293226, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37874792

RESUMEN

INTRODUCTION: Circadian rhythms (CR) regulate daily cycles in behavior, physiology and molecular processes. CRs are endogenous and vary across individuals. Seasonal changes can influence CR. Accordingly, rhythms with different characteristics (amplitude, phase) are depicted during the summer months, as compared to winter. Increasing evidence points to an influence of circadian regulation on physical performance. Here, we aim to obtain a comprehensive circadian gene expression profile for physically active individuals, which can potentially be used for the identification of optimal time intervals for physical exercise. METHODS AND ANALYSIS: To explore these different aspects, we propose a study where we will carry out a molecular analysis of CR by measuring the expression of specific clock and clock-controlled genes, based on a non-invasive approach using RNA extracted from saliva in physically active, healthy participants. We will collect data across two seasons and use computational algorithms to integrate the molecular data with hormonal data (cortisol and melatonin), and generate a profile of CR in healthy individuals of different sex and age groups. Finally, we will use computational tools to predict optimal time intervals for physical performance based on the above-described data, thereby retrieving valuable data on the circadian clock as a key factor for health maintenance and optimization.


Asunto(s)
Relojes Circadianos , Melatonina , Humanos , Relojes Circadianos/genética , Estudios Prospectivos , Ritmo Circadiano/genética , Melatonina/metabolismo , Examen Físico
3.
BMC Med Genomics ; 16(1): 154, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400829

RESUMEN

BACKGROUND: Gliomas are tumours arising mostly from astrocytic or oligodendrocytic precursor cells. These tumours are classified according to the updated WHO classification from 2021 in 4 grades depending on molecular and histopathological criteria. Despite novel multimodal therapeutic approaches, the vast majority of gliomas (WHO grade III and IV) are not curable. The circadian clock is an important regulator of numerous cellular processes and its dysregulation had been found during the progression of many cancers, including gliomas. RESULTS: In this study, we explore expression patterns of clock-controlled genes in low-grade glioma (LGG) and glioblastoma multiforme (GBM) and show that a set of 45 clock-controlled genes can be used to distinguish GBM from normal tissue. Subsequent analysis identified 17 clock-controlled genes with a significant association with survival. The results point to a loss of correlation strength within elements of the circadian clock network in GBM compared to LGG. We further explored the progression patterns of mutations in LGG and GBM, and showed that tumour suppressor APC is lost late both in LGG and GBM. Moreover, HIF1A, involved in cellular response to hypoxia, exhibits subclonal losses in LGG, and TERT, involved in the formation of telomerase, is lost late in the GBM progression. By examining multi-sample LGG data, we find that the clock-controlled driver genes APC, HIF1A, TERT and TP53 experience frequent subclonal gains and losses. CONCLUSIONS: Our results show a higher level of disrgulation at the gene expression level in GBM compared to LGG, and indicate an association between the differentially expressed clock-regulated genes and patient survival in both LGG and GBM. By reconstructing the patterns of progression in LGG and GBM, our data reveals the relatively late gains and losses of clock-regulated glioma drivers. Our analysis emphasizes the role of clock-regulated genes in glioma development and progression. Yet, further research is needed to asses their value in the development of new treatments.


Asunto(s)
Neoplasias Encefálicas , Relojes Circadianos , Glioblastoma , Glioma , Humanos , Relojes Circadianos/genética , Glioma/metabolismo , Glioblastoma/patología , Mutación
4.
Aging Cell ; 22(9): e13935, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37493006

RESUMEN

Alterations in the circadian system are characteristic of aging on Earth. With the decline in physiological processes due to aging, several health concerns including vision loss, cardiovascular disorders, cognitive impairments, and muscle mass loss arise in elderly populations. Similar health risks are reported as "red flag" risks among astronauts during and after a long-term Space exploration journey. However, little is known about the common molecular alterations underlying terrestrial aging and space-related aging in astronauts, and controversial conclusions have been recently reported. In light of the regulatory role of the circadian clock in the maintenance of human health, we review here the overlapping role of the circadian clock both on aging on Earth and spaceflight with a focus on the four most affected systems: visual, cardiovascular, central nervous, and musculoskeletal systems. In this review, we briefly introduce the regulatory role of the circadian clock in specific cellular processes followed by alterations in those processes due to aging. We next summarize the known molecular alterations associated with spaceflight, highlighting involved clock-regulated genes in space flown Drosophila, nematodes, small mammals, and astronauts. Finally, we discuss common genes that are altered in terms of their expression due to aging on Earth and spaceflight. Altogether, the data elaborated in this review strengthen our hypothesis regarding the timely need to include circadian dysregulation as an emerging hallmark of aging on Earth and beyond.


Asunto(s)
Relojes Circadianos , Vuelo Espacial , Animales , Humanos , Anciano , Ritmo Circadiano/genética , Envejecimiento/genética , Relojes Circadianos/genética , Drosophila , Mamíferos
5.
Front Digit Health ; 5: 1157654, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153516

RESUMEN

Circadian medicine, the study of the effects of time on health and disease has seen an uprising in recent years as a means to enhance health and performance, and optimize treatment timing. Our endogenous time generating system -the circadian clock- regulates behavioural, physiological and cellular processes. Disruptions of the clock, via external factors like shift work or jet lag, or internal perturbations such as genetic alterations, are linked to an increased risk of various diseases like obesity, diabetes, cardiovascular diseases and cancer. By aligning an individual's circadian clock with optimal times for performing daily routines, physical and mental performance, and also the effectiveness of certain therapies can be improved. Despite the benefits of circadian medicine, the lack of non-invasive tools for characterizing the clock limits the potential of the field. TimeTeller is a non-invasive molecular/digital tool for the characterization of circadian rhythms and prediction of daily routines, including treatment timing, to unlock the potential of circadian medicine and implementing it in various settings. Given the multiple known and potentially yet unknown dependent health factors of individual circadian rhythms, the utility of this emerging biomarker is best exploited in data driven, personalized medicine use cases, using health information across lifestyle, care, and research settings.

6.
NPJ Microgravity ; 9(1): 30, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012297

RESUMEN

The circadian clock regulates cellular and molecular processes in mammals across all tissues including skeletal muscle, one of the largest organs in the human body. Dysregulated circadian rhythms are characteristic of aging and crewed spaceflight, associated with, for example, musculoskeletal atrophy. Molecular insights into spaceflight-related alterations of circadian regulation in skeletal muscle are still missing. Here, we investigated potential functional consequences of clock disruptions on skeletal muscle using published omics datasets obtained from spaceflights and other clock-altering, external (fasting and exercise), or internal (aging) conditions on Earth. Our analysis identified alterations of the clock network and skeletal muscle-associated pathways, as a result of spaceflight duration in mice, which resembles aging-related gene expression changes observed in humans on Earth (e.g., ATF4 downregulation, associated with muscle atrophy). Furthermore, according to our results, external factors such as exercise or fasting lead to molecular changes in the core-clock network, which may compensate for the circadian disruption observed during spaceflights. Thus, maintaining circadian functioning is crucial to ameliorate unphysiological alterations and musculoskeletal atrophy reported among astronauts.

7.
Front Physiol ; 13: 873237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547585

RESUMEN

A variety of organisms including mammals have evolved a 24h, self-sustained timekeeping machinery known as the circadian clock (biological clock), which enables to anticipate, respond, and adapt to environmental influences such as the daily light and dark cycles. Proper functioning of the clock plays a pivotal role in the temporal regulation of a wide range of cellular, physiological, and behavioural processes. The disruption of circadian rhythms was found to be associated with the onset and progression of several pathologies including sleep and mental disorders, cancer, and neurodegeneration. Thus, the role of the circadian clock in health and disease, and its clinical applications, have gained increasing attention, but the exact mechanisms underlying temporal regulation require further work and the integration of evidence from different research fields. In this review, we address the current knowledge regarding the functioning of molecular circuits as generators of circadian rhythms and the essential role of circadian synchrony in a healthy organism. In particular, we discuss the role of circadian regulation in the context of behaviour and cognitive functioning, delineating how the loss of this tight interplay is linked to pathological development with a focus on mental disorders and neurodegeneration. We further describe emerging new aspects on the link between the circadian clock and physical exercise-induced cognitive functioning, and its current usage as circadian activator with a positive impact in delaying the progression of certain pathologies including neurodegeneration and brain-related disorders. Finally, we discuss recent epidemiological evidence pointing to an important role of the circadian clock in mental health.

8.
Cancers (Basel) ; 13(23)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34885088

RESUMEN

Increasing evidence suggests a role for circadian dysregulation in prompting disease-related phenotypes in mammals. Cancer and neurodegenerative disorders are two aging related diseases reported to be associated with circadian disruption. In this study, we investigated a possible effect of circadian disruption in Parkinson's disease (PD) and colorectal cancer (CRC). We used high-throughput data sets retrieved from whole blood of idiopathic PD (IPD) patients and time course data sets derived from an in vitro model of CRC including the wildtype and three core-clock knockout (KO) cell lines. Several gene expression alterations in IPD patients resembled the expression profiles in the core-clock KO cells. These include expression changes in DBP, GBA, TEF, SNCA, SERPINA1 and TGFB1. Notably, our results pointed to alterations in the core-clock network in IPD patients when compared to healthy controls and revealed variations in the expression profile of PD-associated genes (e.g., HRAS and GBA) upon disruption of the core-clock genes. Our study characterizes changes at the transcriptomic level following circadian clock disruption on common cellular pathways associated with cancer and neurodegeneration (e.g., immune system, energy metabolism and RNA processing), and it points to a significant influence on the overall survival of colon cancer patients for several genes resulting from our analysis (e.g., TUBB6, PAK6, SLC11A1).

9.
BMJ Open Sport Exerc Med ; 7(1): e000876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33680499

RESUMEN

OBJECTIVES: In this study, we investigated daily fluctuations in molecular (gene expression) and physiological (biomechanical muscle properties) features in human peripheral cells and their correlation with exercise performance. METHODS: 21 healthy participants (13 men and 8 women) took part in three test series: for the molecular analysis, 15 participants provided hair, blood or saliva time-course sampling for the rhythmicity analysis of core-clock gene expression via RT-PCR. For the exercise tests, 16 participants conducted strength and endurance exercises at different times of the day (9h, 12h, 15h and 18h). Myotonometry was carried out using a digital palpation device (MyotonPRO), five muscles were measured in 11 participants. A computational analysis was performed to relate core-clock gene expression, resting muscle tone and exercise performance. RESULTS: Core-clock genes show daily fluctuations in expression in all biological samples tested for all participants. Exercise performance peaks in the late afternoon (15-18 hours for both men and women) and shows variations in performance, depending on the type of exercise (eg, strength vs endurance). Muscle tone varies across the day and higher muscle tone correlates with better performance. Molecular daily profiles correlate with daily variation in exercise performance. CONCLUSION: Training programmes can profit from these findings to increase efficiency and fine-tune timing of training sessions based on the individual molecular data. Our results can benefit both professional athletes, where a fraction of seconds may allow for a gold medal, and rehabilitation in clinical settings to increase therapy efficacy and reduce recovery times.

10.
EBioMedicine ; 65: 103248, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33647771

RESUMEN

BACKGROUND: Obstructive Sleep Apnea (OSA) is a highly prevalent and underdiagnosed sleep disorder. Recent studies suggest that OSA might disrupt the biological clock, potentially causing or worsening OSA-associated comorbidities. However, the effect of OSA treatment on clock disruption is not fully understood. METHODS: The impact of OSA and short- (four months) and long-term (two years) OSA treatment, with Continuous Positive Airway Pressure (CPAP), on the biological clock was investigated at four time points within 24 h, in OSA patients relative to controls subjects (no OSA) of the same sex and age group, in a case-control study. Plasma melatonin and cortisol, body temperature and the expression levels and rhythmicity of eleven clock genes in peripheral blood mononuclear cells (PBMCs) were assessed. Additional computational tools were used for a detailed data analysis. FINDINGS: OSA impacts on clock outputs and on the expression of several clock genes in PBMCs. Neither short- nor long-term treatment fully reverted OSA-induced alterations in the expression of clock genes. However, long-term treatment was able to re-establish levels of plasma melatonin and cortisol and body temperature. Machine learning methods could discriminate controls from untreated OSA patients. Following long-term treatment, the distinction between controls and patients disappeared, suggesting a closer similarity of the phenotypes. INTERPRETATION: OSA alters biological clock-related characteristics that differentially respond to short- and long-term CPAP treatment. Long-term CPAP was more efficient in counteracting OSA impact on the clock, but the obtained results suggest that it is not fully effective. A better understanding of the impact of OSA and OSA treatment on the clock may open new avenues to OSA diagnosis, monitoring and treatment.


Asunto(s)
Relojes Biológicos/genética , Presión de las Vías Aéreas Positiva Contínua , Apnea Obstructiva del Sueño/terapia , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Temperatura Corporal , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Estudios de Casos y Controles , Humanos , Hidrocortisona/sangre , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Aprendizaje Automático , Masculino , Melatonina/sangre , Persona de Mediana Edad , Factores de Tiempo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
11.
iScience ; 23(10): 101551, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33083720

RESUMEN

Impairment of circadian rhythms impacts carcinogenesis. SMAD4, a clock-controlled gene and central component of the TGFß canonical pathway, is frequently mutated in pancreatic ductal adenocarcinoma (PDA), leading to decreased survival. Here, we used an in vitro PDA model of SMAD4-positive and SMAD4-negative cells to investigate the interplay between circadian rhythms, the TGFß canonical signaling pathway, and its impact on tumor malignancy. Our data show that TGFß1, SMAD3, SMAD4, and SMAD7 oscillate in a circadian fashion in SMAD4-positive PDA cells, whereas altering the clock impairs the mRNA dynamics of these genes. Furthermore, the expression of the clock genes DEC1, DEC2, and CRY1 varied depending on SMAD4 status. TGFß pathway activation resulted in an altered clock, cell-cycle arrest, accelerated apoptosis rate, enhanced invasiveness, and chemosensitivity. Our data suggest that the impact of TGFß on the clock is SMAD4-dependent, and S MAD3, SMAD4, DEC1, and CRY1 involved in this cross-talk affect PDA patient survival.

12.
Cancers (Basel) ; 12(4)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32295075

RESUMEN

Accumulating evidence points to a link between circadian clock dysfunction and the molecular events that drive tumorigenesis. Here, we investigated the connection between the circadian clock and the hallmarks of cancer in an in vitro model of colorectal cancer (CRC). We used a cross-platform data normalization method to concatenate and compare available microarray and RNA-sequencing time series data of CRC cell lines derived from the same patient at different disease stages. Our data analysis suggests differential regulation of molecular pathways between the CRC cells and identifies several of the circadian and likely clock-controlled genes (CCGs) as cancer hallmarks and circadian drug targets. Notably, we found links of the CCGs to Huntington's disease (HD) in the metastasis-derived cells. We then investigated the impact of perturbations of our candidate genes in a cohort of 439 patients with colon adenocarcinoma retrieved from the Cancer Genome Atlas (TCGA). The analysis revealed a correlation of the differential expression levels of the candidate genes with the survival of patients. Thus, our study provides a bioinformatics workflow that allows for a comprehensive analysis of circadian properties at different stages of colorectal cancer, and identifies a new association between cancer and HD.

13.
J Plast Reconstr Aesthet Surg ; 73(3): 590-597, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31734236

RESUMEN

OBJECTIVE: This study used an experimental model mimicking early postoperative enteral feeding after the transfer of free jejunal flap and tested the hypothesis that jejunal infusion with dextrose or saline is associated with improved tissue perfusion and/or less mucosal damage after ischemia/reperfusion (IR) injury. METHODS: Thirty-five male Sprague Dawley rats were randomly divided into five groups: sham group (no IR and no intraluminal infusion); IR control group (IR but not intraluminal infusion); IR plus intraluminal 0.9% NaCl infusion or 5% dextrose or 10% dextrose infusion groups. A jejunal segment of each rat was isolated. The animals had jejunal ischemia for 40 min, reperfusion, and intestinal infusion on the basis of their allocation. Jejunal tissue perfusion was measured with laser Doppler flowmetry at one hour and two hours after reperfusion, after which the animals were sacrificed and tissue samples were obtained for the scoring of histological damage at superficial and cryptic epithelium, villus structure, and inflammatory cell infiltration and tissue nitric oxide (NO), interleukin (IL)-1, IL-6, and matrix metalloproteinase-1 (MMP) level measurements. RESULTS: At 1 h of reperfusion, IR plus 5% dextrose and 10% dextrose groups both had significantly higher perfusion rates than the IR control group (384.8 ± 26.7 and 462.4 ± 44.7 versus 270.3 ± 34.2 PU, respectively, p < 0.05 for both). These differences were maintained at 2 h of reperfusion (p < 0.05 for both). Saline infusion, however, resulted in improved tissue perfusion only at the early phase of reperfusion. Intraluminal infusion with dextrose solution, either 5% or 10%, was associated with higher tissue NO, IL-1, and IL-6 levels than that in the sham group (p < 0.05 for all). In addition, intraluminal infusion of any fluid resulted in less severe histological damage (8.1 ± 0.9 versus 5.8 ± 1.0, 5.4 ± 0.9, and 5.2 ± 1.9, for IR plus saline, 5% dextrose and 10% dextrose groups, respectively, p < 0.05 for all). CONCLUSIONS: Intraluminal infusion of fluids, particularly dextrose solutions, may be protective against IR injury as demonstrated by improved tissue perfusion and less histological damage. In addition, increases in tissue NO, IL-1, and IL-6 levels in association with dextrose infusion may be explained by the activation of pro-inflammatory and anti-inflammatory protective pathways. These support early enteral feeding after free jejunum flap transfers; however, further studies are warranted.


Asunto(s)
Yeyuno/cirugía , Daño por Reperfusión/prevención & control , Animales , Modelos Animales de Enfermedad , Colgajos Tisulares Libres/cirugía , Glucosa/farmacología , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/patología , Yeyuno/irrigación sanguínea , Yeyuno/metabolismo , Yeyuno/patología , Flujometría por Láser-Doppler , Masculino , Óxido Nítrico/metabolismo , Ratas , Ratas Sprague-Dawley , Reperfusión/métodos , Daño por Reperfusión/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA