Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Asia Pac J Clin Nutr ; 33(1): 39-46, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494686

RESUMEN

BACKGROUND AND OBJECTIVES: To explore the effect of nutrition management under ERAS concept in patients with spinal tuberculosis. METHODS AND STUDY DESIGN: The study was conducted in an orthopedic ward of a tertiary grade A special hospital in Beijing. The patients admitted from January 1, 2021 to June 27, 2023 were screened for inclusion. The qualified patients were randomized into experimental group or control group. The experimental group received perioperative nutrition management under the concept of ERAS while the control group received routine perioperative management in hospital. The data was collected on the next day of admission, the next day and the sixth day after operation, including laboratory indicators (lymphocyte count, hemoglobin level, etc), intraoperative bleeding volume, postoperative exhaust, defecation time, drainage volume, albumin infusion amount, nutritional risk score, length of stay, hospitalization costs, etc. Univariate analysis and multivariate analysis correcting for gender, age, and baseline values were performed using SPSS24.0. RESULTS: A total of 127 patients with spinal tuberculosis completed the study. Compared with the control group, the intraoperative blood loss (p=0.028) in the experimental group was significantly reduced, the postoperative exhaust time (p=0.012) and defecation time (p=0.012) were significantly shortened, and the nutritional status (p<0.001) was significantly improved. Besides, the results of multivariate analysis are robust after correcting potential confounding factors. CONCLUSIONS: Nutrition management under the concept of ERAS is helpful to reduce intraoperative bleeding, promote postoperative flatus and defecation, and improve nutritional status in patients with spinal tuberculosis, which may further improve their clinical outcome and prognosis.


Asunto(s)
Tuberculosis de la Columna Vertebral , Humanos , Tuberculosis de la Columna Vertebral/cirugía , Tiempo de Internación , Atención Perioperativa/métodos , Pronóstico , Estado Nutricional , Complicaciones Posoperatorias/prevención & control
2.
J Environ Manage ; 354: 120367, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387352

RESUMEN

Black carbon (BC) significantly affects climate, environmental quality, and human health. This study utilised Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), which can compensate for the shortcomings of ground BC monitoring in spatial-temporal distribution to study the pollution characteristics of BC and potential pollution sources in a typical industrial city (Xinxiang) with serious air pollution in northern China. The results showed that average daily ground observation and MERRA-2 concentration of BC of 7.33 µg m-3 and 9.52 µg m-3. The mean BC concentration derived from MERRA-2 reanalysis data was higher than ground measurement due to resolution limitations and pollution from the northern regions. The reliability of the MERRA-2 data was confirmed through correlation analysis. Consideration of the spatial distribution of BC from MERRA-2 and incorporating the potential source contribution function (PSCF), concentration-weighted trajectory (CWT), and emission inventory, other possible source areas and primary sources of BC in Xinxiang were investigated. The results indicated that implementing transportation and residential emission control measures in Henan Province and its surrounding provinces, such as Hebei Province, will effectively decrease the BC level in Xinxiang City. A passively smoked cigarettes model was used to evaluate the risk of BC exposure. The percentage of lung function decrement (PLFD) was the highest in school-age children, while the impact on lung cancer (LC) health risk was comparatively lower. Notably, the BC health risk in Xinxiang was lower than in most cities across Asia.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Niño , Humanos , Ciudades , Contaminantes Atmosféricos/análisis , Estudios Retrospectivos , Reproducibilidad de los Resultados , Monitoreo del Ambiente , China , Contaminación del Aire/análisis , Hollín , Carbono/análisis , Material Particulado/análisis
3.
J Environ Manage ; 342: 118276, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37276627

RESUMEN

High N-fertilizer applications to conventional vegetable production systems are associated with substantial emissions of NH3, a key substance that triggers haze pollution and ecosystem eutrophication and thus, causing considerable damage to human and ecosystem health. While N fertilization effects on NH3 volatilization from cereal crops have been relatively well studied, little is known about the magnitude and yield-scaled emissions of NH3 from vegetable systems. Here we report on a 2-year field study investigating the effect of various types and rates of fertilizer application on NH3 emissions and crop yields for a pepper-lettuce-cabbage rotation system in southwest China. Our results show that both NH3 emissions and direct emission factors of applied N varied largely across seasons over the 2-year period, highlighting the importance of measurements spanning entire cropping years. Across all treatments varying from solely applying urea fertilizers to only using organic manures, annual NH3 emissions ranged from 0.64 to 92.4 kg N ha-1 yr-1 (or 0.07-6.84 g N kg-1 dry matter), equivalent to 0.05-5.99% of the applied N. At annual scale, NH3 emissions correlated positively with soil δ15N values, indicating that soil δ15N may be used as an indicator for NH3 losses. NH3 emissions from treatments fertilized partially or fully with manure were significantly lower compared with the urea fertilized treatment, while vegetable yields remained unaffected. Moreover, full substitution of urea by manure as compared to the partial substitution further reduced the yield-scaled annual NH3 emissions by 79.0-92.4%. Across all vegetable seasons, there is a significant negative relationship between yield-scaled NH3 emissions and crop N use efficiency. Overall, our results suggest that substituting urea by manure and reducing total N inputs by 30-50% allows to reduce NH3 emissions without jeopardizing yields. Such a change in management provides a feasible option to achieve environmental sustainability and food security in conventional vegetable systems.


Asunto(s)
Nitrógeno , Verduras , Humanos , Agricultura/métodos , Óxido Nitroso/análisis , Fertilizantes/análisis , Estiércol , Ecosistema , Suelo , Urea , China , Amoníaco
4.
Environ Geochem Health ; 45(8): 6199-6214, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37273087

RESUMEN

An accurate assessment of human exposure to pollutants through the ingestion of dust and/or soil particles depends on a thorough understanding their rate of human ingestion. To this end, we investigated the load and size distribution patterns of dust/soil particles on the hands of three typical subpopulations, including preschoolers, college students, and security guards (outdoor workers). The geometric mean diameter of dust/soil particles on hands was observed to be 38.7 ± 11.2, 40.0 ± 12.1, and 36.8 ± 10.4 µm for preschoolers, college students, and security guards, respectively. The particle size distribution differed between subpopulations: Preschoolers were more exposed to fine particles, whereas security guards were exposed to more coarse particles. The geometric means of dust/soil particle loading on the hands were 0.126, 0.0163, and 0.0377 mg/cm2 for preschoolers, college students, and security guards, respectively. Males had statistically higher dust/soil particle loadings on hands than females, notably for preschoolers and college students; preschoolers with frequent hand contact with the bare ground had higher dust/soil particle loadings compared to those of peers in contact with commercial and residential grounds. The mean total dust/soil particle ingestion rate was estimated to be 245, 19.7, and 33.1 mg/day for preschoolers, college students, and security guards, respectively. Our estimates for college students and security guards are close to the consensus central-tendency values recommended by the U.S. EPA's Exposure Factor Handbook for American adults, whereas the estimates for children are much higher than the upper percentile values recommended for American children.


Asunto(s)
Contaminantes Ambientales , Contaminantes del Suelo , Niño , Masculino , Adulto , Femenino , Humanos , Polvo/análisis , Suelo , Contaminantes Ambientales/análisis , China , Ingestión de Alimentos , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Contaminantes del Suelo/análisis
5.
Bull Environ Contam Toxicol ; 109(1): 61-67, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35412056

RESUMEN

The present study performed a continuous mode of bioleaching to investigate the leaching efficiency of Titanium (Ti) from bauxite residue using Penicillium Tricolor at between 4% and 12% pulp densities during a 120-day running. Obtained results of the current study showed that increased pulp density led to a decrease in biomass, dissolved oxygen, and amount of leaching Ti as well as an increase in pH value. Further, it was found that efficiency of bioleaching can be enhanced by increasing the rate of aeration, retention time, and concentration of carbon source. However, it was also evident that, at high pulp density, excessive agitation did not give an expected leaching efficiency but a collapse of biomass. In addition, results of the present study showed that the maximum leaching amount of Ti was 3202 mg/L with a corresponding leaching ratio of 50.35% during the whole bioleaching process. Moreover, it was noted that the biomass showed a significant negative correlation with the pH value and dissolved oxygen. However, the biomass showed a significant positive correlation with leaching amount of Ti and thus indicate that microbial metabolic activities are the uppermost factor affecting the continuous leaching performance.


Asunto(s)
Óxido de Aluminio , Penicillium , Oxígeno/metabolismo , Penicillium/metabolismo , Titanio
6.
J Environ Sci (China) ; 115: 265-276, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34969454

RESUMEN

Luoyang is a typical heavy industrial city in China, with a coal-dominated energy structure and serious air pollution. Following the implementation of the clean air actions, the physicochemical characteristics and sources of PM2.5 have changed. A comprehensive study of PM2.5 was conducted from October 16, 2019 to January 23, 2020 to evaluate the effectiveness of previous control measures and further to provide theory basis for more effective policies in the future. Results showed that the aerosol pollution in Luoyang in autumn and winter is still serious with the average concentration of 91.1 µg/m3, although a large reduction (46.9%) since 2014. With the contribution of nitrate increased from 12.5% to 25.1% and sulfate decreased from 16.7% to 11.2%, aerosol pollution has changed from sulfate-dominate to nitrate-dominate. High NO3-/SO42- ratio and the increasing of NO3-/SO42- ratio with the aggravation of pollution indicating vehicle exhaust playing an increasingly important role in PM2.5 pollution in Luoyang, especially in the haze processes. Secondary inorganic ions contributed significantly to the enhancement of PM2.5 during the pollution period. The high value of Cl-/Na+ and EC concentration indicate coal combustion in Luoyang is still serious. The top three contributor sources were secondary inorganic aerosols (33.3%), coal combustion (13.6%), and industrial emissions (13.4%). Close-range transport from the western and northeastern directions were more important factors in air pollution in Luoyang during the sampling period. It is necessary to strengthen the control of coal combustion and reduce vehicle emissions in future policies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Monitoreo del Ambiente , Nitratos , Material Particulado/análisis , Estaciones del Año , Emisiones de Vehículos/análisis
7.
Glob Chang Biol ; 27(12): 2807-2821, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33742490

RESUMEN

Globally, about 50% of all arable soils are classified as acidic. As crop and plant growth are significantly hampered under acidic soil conditions, many farmers, but increasingly as well forest managers, apply lime to raise the soil pH. Besides its direct effect on soil pH, liming also affects soil C and nutrient cycles and associated greenhouse gas (GHG) fluxes. In this meta-analysis, we reviewed 1570 observations reported in 121 field-based studies worldwide, to assess liming effects on soil GHG fluxes and plant productivity. We found that liming significantly increases crop yield by 36.3%. Also, soil organic C (SOC) stocks were found to increase by 4.51% annually, though soil respiration is stimulated too (7.57%). Moreover, liming was found to reduce soil N2 O emission by 21.3%, yield-scaled N2 O emission by 21.5%, and CH4 emission and yield-scaled CH4 emission from rice paddies by 19.0% and 12.4%, respectively. Assuming that all acid agricultural soils are limed periodically, liming results in a total GHG balance benefit of 633-749 Tg CO2 -eq year-1 due to reductions in soil N2 O emissions (0.60-0.67 Tg N2 O-N year-1 ) and paddy soil CH4 emissions (1.75-2.21 Tg CH4  year-1 ) and increases in SOC stocks (65.7-110 Tg C year-1 ). However, this comes at the cost of an additional CO2 release (c. 624-656 Tg CO2  year-1 ) deriving from lime mining, transport and application, and lime dissolution, so that the overall GHG balance is likely neutral. Nevertheless, liming of acid agricultural soils will increase yields by at least 6.64 × 108  Mg year-1 , covering the food supply of 876 million people. Overall, our study shows for the first time that a general strategy of liming of acid agricultural soils is likely to result in an increasing sustainability of global agricultural production, indicating the potential benefit of liming acid soils for climate change mitigation and food security.


Asunto(s)
Cambio Climático , Suelo , Agricultura , Compuestos de Calcio , Dióxido de Carbono/análisis , Seguridad Alimentaria , Humanos , Metano/análisis , Óxido Nitroso/análisis , Óxidos
8.
J Environ Sci (China) ; 103: 322-335, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33743913

RESUMEN

To study the pollution features and underlying mechanism of PM2.5 in Luoyang, a typical developing urban site in the central plain of China, 303 PM2.5 samples were collected from April 16 to December 29, 2015 to analyze the elements, water soluble inorganic ions, organic carbon and elemental carbon. The annual mean concentration of PM2.5 was 142.3 µg/m3, and 75% of the daily PM2.5 concentrations exceeded the 75 µg/m3. The secondary inorganic ions, organic matter and mineral dust were the most abundant species, accounting for 39.6%, 19.2% and 9.3% of the total mass concentration, respectively. But the major chemical components showed clear seasonal dependence. SO42- was most abundant specie in spring and summer, which related to intensive photochemical reaction under high O3 concentration. In contrast, the secondary organic carbon and ammonium while primary organic carbon and ammonium significantly contributed to haze formation in autumn and winter, respectively. This indicated that the collaboration effect of secondary inorganic aerosols and carbonaceous matters result in heavy haze in autumn and winter. Six main sources were identified by positive matrix factorization model: industrial emission, combustion sources, traffic emission, mineral dust, oil combustion and secondary sulfate, with the annual contribution of 24%, 20%, 24%, 4%, 5% and 23%, respectively. The potential source contribution function analysis pointed that the contribution of the local and short-range regional transportation had significant impact. This result highlighted that local primary carbonaceous and precursor of secondary carbonaceous mitigation would be key to reduce PM2.5 and O3 during heavy haze episodes in winter and autumn.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Ciudades , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año , Emisiones de Vehículos/análisis
9.
J Environ Sci (China) ; 100: 1-10, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33279022

RESUMEN

Following the implementation of the strictest clean air policies to date in Beijing, the physicochemical characteristics and sources of PM2.5 have changed over the past few years. To improve pollution reduction policies and subsequent air quality further, it is necessary to explore the changes in PM2.5 over time. In this study, over one year (2017-2018) field study based on filter sampling (TH-150C; Wuhan Tianhong, China) was conducted in Fengtai District, Beijing, revealed that the annual average PM2.5 concentration (64.8 ± 43.1 µg/m3) was significantly lower than in previous years and the highest PM2.5 concentration occurred in spring (84.4 ± 59.9 µg/m3). Secondary nitrate was the largest source and accounted for 25.7% of the measured PM2.5. Vehicular emission, the second largest source (17.6%), deserves more attention when considering the increase in the number of motor vehicles and its contribution to gaseous pollutants. In addition, the contribution from coal combustion to PM2.5 decreased significantly. During weekends, the contribution from EC and NO3- increased whereas the contributions from SO42-, OM, and trace elements decreased, compared with weekdays. During the period of residential heating, PM2.5 mass decreased by 23.1%, compared with non-heating period, while the contributions from coal combustion and vehicular emission, and related species increased. With the aggravation of pollution, the contribution of vehicular emission and secondary sulfate increased and then decreased, while the contribution of NO3- and secondary nitrate continued to increase, and accounted for 34.0% and 57.5% of the PM2.5 during the heavily polluted days, respectively.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Beijing , China , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año
10.
Environ Geochem Health ; 40(6): 2441-2452, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29691784

RESUMEN

Concentrations of eight trace metals (TMs) in road dust (RD) (particles < 25 µm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg-1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As > Pb > Cr > Mn > Cd > Zn > Ni > Cu for both children and adults.


Asunto(s)
Arsénico/análisis , Polvo/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , Oligoelementos/análisis , China , Ciudades , Humanos , Tamaño de la Partícula , Medición de Riesgo
11.
Sci Total Environ ; 927: 172396, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608903

RESUMEN

Size-segregated aerosols collected in Beijing from 2021 to 2022 were used to investigate the contribution of organic aerosols to the aerosol liquid water content (ALWC), the influencing factors of ALWC, and the concentrations and size distribution characteristics of water-soluble organic carbon (WSOC) after clean air actions. The results showed that the concentration of WSOC in particulate matter (PM)1.8 was 3.52 ± 2.43 µg/m3 during the sampling period. Obvious changes were observed in the size distribution of WSOC after clean air actions, which may be attributed to the enhancement of atmospheric oxidation capacity and the decrease in PM concentration. The contribution of organic aerosols to the ALWC in fine PM was 18.1 % during the sampling period, which was more significant at lower particles concentration and smaller particle size ranges. The ambient relative humidity (RH) and the ratio of NO3-/SO42- had an apparent influence on ALWC. The continuous increase in the nitrate proportion significantly reduced the deliquescence point of the aerosols, making them prone to hygroscopic growth at lower RH. Analysis of the relation among nitrogen oxidation ratio (sulfur oxidation ratio), ALWC and PM1.8 mass concentrations suggests that organic matter has a significant effect on the formation of secondary inorganic aerosols in the initial phase of pollution formation and plays a crucial role in aerosol pollution formation in Beijing. These results are conducive to understanding the formation mechanism of aerosols and provide scientific data and theoretical support for the formulation of more effective emission-reduction measures.

12.
Huan Jing Ke Xue ; 45(3): 1337-1348, 2024 Mar 08.
Artículo en Zh | MEDLINE | ID: mdl-38471850

RESUMEN

Carbonaceous aerosol, as an important component of atmospheric aerosol, has a significant impact on atmospheric environmental quality, human health, and global climate change. To investigate the characteristics and sources of carbonaceous aerosol in atmospheric fine particulate matter (PM2.5) in Huaxi District of Guiyang, an in-situ observational study was conducted during different seasons in 2020, and the carbonaceous components of PM2.5 were measured using a thermal-optical carbon analyzer (DRI Model 2015). The results of the study showed that the average concentrations of PM2.5, total carbonaceous aerosol (TCA), organic carbon (OC), secondary organic carbon (SOC), and elemental carbon (EC) concentrations during the observation period were (39.7±22.3), (14.1±7.2), (7.6±3.9), (4.4±2.6), and (2.0±1.0) µg·m-3, respectively, and the mean value of OC/EC was (3.9±0.8). ρ(PM2.5), ρ(TCA), ρ(OC), ρ(SOC), and ρ(EC) showed a seasonal variation pattern with the highest in winter [(52.6±28.6), (17.0±9.6), (9.1±5.2), (6.1±3.9), and (2.4±1.2) µg·m-3, respectively] and the lowest in summer [(25.1±7.1), (11.6±3.6), (6.3±1.9), (3.7±1.2), and (1.6±0.6) µg·m-3, respectively]. The seasonal variation in OC/EC showed summer (4.2±0.8) > winter (3.8±0.9) > autumn (3.8±0.5) > spring (3.7±0.9), indicating the presence of SOC generation in all seasons in Huaxi District. SOC showed a significant correlation with OC (R2 =0.9), and the SOC concentration tended to increase with the increase in atmospheric oxidation. OC showed a good correlation with EC in all seasons, with the highest in autumn (R2 =0.9) and lower correlations in the other three seasons (R2 ranged from 0.74 to 0.75), indicating a common source. According to OC/EC ratio range, it was preliminarily determined that carbonaceous aerosol came from vehicle exhaust emissions, coal burning emissions, and biomass combustion emissions. In order to further quantify the contribution of major emission sources to carbonaceous aerosol, the results of this study using PMF to analyze the sources of carbonaceous aerosol showed that the main sources of carbonaceous aerosol in Huaxi District of Guiyang were coal combustion sources (29.3%), motor vehicle emission sources (21.5%), and biomass combustion sources (49.2%).

13.
Huan Jing Ke Xue ; 45(5): 3047-3058, 2024 May 08.
Artículo en Zh | MEDLINE | ID: mdl-38629565

RESUMEN

In order to comprehensively evaluate the effects of vermicomposting on compost quality and the conversion of heavy metals under different control conditions, 109 studies were reviewed. The effects of earthworm species, pre-compost time, ventilation methods, initial C/N, initial pH, and initial moisture of the raw materials on compost quality and the heavy metal toxicity were quantitatively discussed during the vermicomposting process through Meta-analysis. The results showed that the six subgroups of factors all showed obvious influences on the compost quality and heavy metal toxicity. After vermicomposting, the contents of NO3--N (116.2%), TN (29.1%), TP (31.2%), and TK (15.0%) were significantly increased, whereas NH4+-N (-14.8%) and C/N (-36.3%) were significantly decreased. Meanwhile, the total amount of Cu and Cr of the final compost and their bioavailability were significantly reduced. Considering the influences of grouping factors on compost quality and heavy metals, it is recommended to adjust the initial moisture of pile materials to 70%-80%, C/N to 30-85, and pH to 6-7 and to conduct pre-composting for 0-15 d; additionally, vermicomposting should be naturally placed when the composting is aimed at promoting the compost quality. If the main purpose is to weaken the perniciousness of heavy metals in the raw material, it is recommended to adjust the initial moisture of the material to 50%-60%, C/N to less than 30, and pH to 7-8; to conduct no pre-compost; regularly turn the piles; and use the earthworm Eudrilus eugeniae for vermicomposting.


Asunto(s)
Compostaje , Metales Pesados , Oligoquetos , Animales , Suelo/química , Aguas del Alcantarillado/química , Metales Pesados/análisis
14.
Tuberculosis (Edinb) ; 148: 102534, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38909563

RESUMEN

BACKGROUND: Extrapulmonary tuberculosis (EPTB) without symptomatic pulmonary involvement has been thought to be non-transmissible, but EPTB with asymptomatic pulmonary tuberculosis (PTB) could transmit tuberculosis (TB). Genomic investigation of Mycobacterium tuberculosis (Mtb) isolates from EPTB may provide insight into its epidemiological role in TB transmission. METHODS: Between January 2017 and May 2020, 107 Mtb isolates were obtained from surgical drainage of bone TB patients at the Beijing Chest Hospital, and 218 Mtb strains were isolated from PTB cases. These 325 Mtb isolates were whole-genome sequenced to reconstruct a phylogenetic tree, identify transmission clusters, and infer transmission links using a Bayesian approach. Possible subclinical PTB in the bone TB patients was investigated with chest imaging by two independent experts. RESULTS: Among 107 bone TB patients, 10 were in genomic clusters (≤12 SNPs). Phylogenetic analysis suggested that three bone TB patients transmitted the infection to secondary cases, supported by epidemiological investigations. Pulmonary imaging of 44 bone TB patients revealed that 79.5 % (35/44) had radiological abnormalities suggestive of subclinical PTB. CONCLUSIONS: This study provides genomic evidence that bone TB patients without clinically diagnosed PTB can be sources of TB transmission, underscoring the importance of screening for subclinical, transmissible PTB among EPTB cases.

15.
Environ Pollut ; 336: 122386, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37591323

RESUMEN

New pollutants, pharmaceuticals and personal care products (PPCPs), accumulate in sewage sludge (SS) in wastewater treatment plants (WWTPs), posing risks to the environment and to human health. In the present study, the fates of typical PPCPs, carbamazepine (CBZ), triclosan (TCS), ibuprofen (IBU) and galaxolide (HHCB), were examined during WW treatment. Additionally, SS collected from a WWTP was used for aerobic composting to investigate the influences of micron-sized Fe3O4 (M-Fe) and nano-sized Fe3O4 (N-Fe) on the degradation of these PPCPs and the succession of microbial communities during the composting process. The results showed that the mean concentrations of CBZ, TCS, IBU and HHCB in the influent of the WWTP were 926.5, 174.4, 8869, and 967.3 ng/g, respectively, and in the effluent were 107.6, 47.0, 283.4, and 88.4 ng/g, respectively. The removal rate averaged ∼80%, while the enrichment rates of the PPCPs in SS ranged from 37.2% to 60.5%. M-Fe and N-Fe reduced NH3 emissions by 32.9% and 54.1% and N2O emissions by 26.2% and 50.8%, respectively. Moreover, the addition of M-Fe and N-Fe effectively increased PPCP degradation rates 1.12-1.66-fold. During the whole process, the additions of M-Fe and N-Fe significantly shifted microbial community structure, and the abundances of Proteobacteria, Chloroflexi, and Actinobacteria were increased during the thermophilic stage, marking them as key PPCP-degrading phyla. Taken together, our results indicated that the addition of M-Fe and N-Fe is an effective method for improving the quality of end compost and accelerating the degradation of PPCPs.

16.
Sci Total Environ ; 868: 161333, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36623666

RESUMEN

Fine particle pollution is still a severe issue in the northwestern region of China where the formation mechanism of which remains ambiguous due to the limited studies there. In this study, a comprehensive study on the chemical composition and sources of PM2.5 at an ex-heavily polluted northwestern city was conducted, based on filter sampling data obtained from three consecutive winter campaigns during 2020-2022. The average PM2.5 during the three winter campaigns were 170.9 ± 66.4, 249.0 ± 75.7, and 200.9 ± 47.6 µg/m3, respectively, with the daily maximum value of PM2.5 exceeds 400 µg/m3 under stagnant meteorological conditions charactered by high relative humidity (>60 %) and low wind speed (<1 m/s). The major chemical components in PM2.5 were found to be inorganic aerosol (55.2 %) that mainly constituted by sulfate (24.2 %), and mineral dust (14.9 %); while the carbonous species contributed a minor fraction (∼13 %). In addition, (NH4)2SO4 and NH4NO3 were the dominate contributors to appearance of low visibility (<3 km) which together accounting for over 85 % of light extinction coefficient (bext) during heavy polluted period. Source appointment of fine particles was then conducted by applying the positive matrix factorization method, and the primary sources were resolved to be coal combustion (27.7 %) and biomass burning (18.6 %), followed by industrial dust (16.2 %), residential combustion (15.3 %), traffic emissions (11.9 %) and dust aerosol (10.4 %). To explore the potential formation mechanism of fine particle pollution, the chemical evolution pattern combined with gaseous pollutants and meteorological parameters were further analyzed, which refine the important role of primary emissions in the forming of high sulfate aerosol loading, while secondary formation was largely suppressed during the winter period that totally different from those reported in the developed regions of China, thus indicating more effort should be paid on the reduction of primary particles emissions in the northwestern cities than on its gaseous percussors.

17.
Huan Jing Ke Xue ; 44(3): 1319-1327, 2023 Mar 08.
Artículo en Zh | MEDLINE | ID: mdl-36922193

RESUMEN

A total of 98 samples were collected to analyze the seasonal variation and source apportionment of carbonaceous components, especially brown carbon (BrC), of PM2.5in Luoyang during 2018-2019. The concentrations of organic carbon (OC) and elemental carbon (EC) ranged from (7.04±1.82) µg·m-3to(23.81±8.68) µg·m-3and (2.96±1.4) µg·m-3to (13.41±7.91) µg·m-3, respectively, showing the seasonal variation of being high in winter and low in summer; the carbonaceous fraction and secondary organic aerosol percentages were higher by 8.33%-141.03% and by 0.77%-63.14%, respectively, compared with that in 2015. The light absorption cross section (MAC) values showed different seasonal variations with the concentration of carbonaceous fraction, shown in descending order as autumn (7.67 m2·g-1)>winter (5.65 m2·g-1)>spring (5.13 m2·g-1)>summer (3.84 m2·g-1). The MAC values ranged from 3.84 to 7.67 m2·g-1 at 445 nm, which was lower than that in coal ash. Seasonal variation in light absorption and the contribution of BrC to total light absorption (babs,BrC,405 nm, babs,BrC,405 nm/babs,405 nm) in descending order was winter (31.57 Mm-1, 33%), autumn (11.40 Mm-1, 25%), spring (4.88 Mm-1, 23%), and summer (2.12 Mm-1, 21%). The proportion of carbonaceous components decreased as haze episodes evolved, whereas the contribution of light absorption of BrC increased, highlighting the important contribution of BrC to the total light absorption. The results of PMF and correlation coefficients of babs,BrC,405 nm and PM2.5 components indicated that motor vehicles and secondary nitrate contributed 27.7% and 24.0%, respectively. Our findings have significant scientific implications for the deep controlling of carbonaceous aerosol, especially for BrC, in Luoyang in the future.

18.
J Healthc Eng ; 2022: 4229377, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35140902

RESUMEN

We have analyzed the arch root morphology, nail placement accuracy, degree of arch deformity, and three-dimensional Cobb angle in patients with NF scoliosis by CT 3D reconstruction. Likewise, we have thoroughly examined arch root morphology, nail placement accuracy, degree of arch deformity, and three-dimensional Cobb angle in patients with idiopathic scoliosis by CT 3D reconstruction. The results of the two groups were statistically analyzed and compared to assess the efficacy and other morphological differences between these groups. For this purpose, 276 patients with scoliosis, including 221 with idiopathic scoliosis and 16 with neurofibromatosis scoliosis, were treated in the hospital, which is from May 2008 to December 2016. The 16 patients with idiopathic scoliosis were matched with patients with neurofibromatosis, and the postoperative CT data were reconstructed in three dimensions, and the measurements included arch morphology, arch transverse diameter, arch-rib joint transverse diameter, three-dimensional coronal Cobb angle, and correction rate. The data of the two groups were statistically analyzed to compare the arch morphology, nail placement accuracy, and treatment effect between patients with NF and patients with AIS. Statistical analysis was performed to compare the differences between NF and AIS patients in terms of morphology, nail placement accuracy, and treatment outcome. The results showed that there were more severely deformed pedicles in NF patients than in idiopathic scoliosis, and the difference between them was statistically significant. Of the 142 screws placed in the NF group, 88 screws were in a good position, and the remaining 54 screws were misplaced.


Asunto(s)
Neurofibromatosis , Escoliosis , Fusión Vertebral , Humanos , Estudios Retrospectivos , Escoliosis/diagnóstico por imagen , Escoliosis/cirugía , Fusión Vertebral/métodos , Resultado del Tratamiento
19.
Bioresour Technol ; 346: 126344, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34780901

RESUMEN

The influences of combination of garbage enzyme and biochar on total organic carbon (TOC) degradation, humification and the fungal succession during sewage sludge (SS) composting were established. Results showed that the GE and BC + GE treatments significantly increased the enzyme activity of fluorescein diacetate hydrolase (FDA) and increased the TOC degradation rate by 9.8% and 21.9% relative to control. The excitation-emission matrix (EEM) combined with the percentage fluorescence response (Pi, n) also proved that the combination of BC and GE promoted fulvic acid-like and humic-like substances production, and thus increased humification. Furthermore, the combination of BC and GE effectively decreased the relative abundance of Unclassified_k_Fugni, while increased the abundance of Ascomycota and Basidiomycota compared with control. The four genera, Pseudeurotium, Talaromyces, Trichoderma, and Penicillium, were the main fungi for the humification. Comparatively, the combined of BC and GE showed the optimal performance for TOC degradation and humification during SS composting.


Asunto(s)
Compostaje , Micobioma , Carbón Orgánico , Sustancias Húmicas , Aguas del Alcantarillado , Suelo
20.
Sci Total Environ ; 806(Pt 2): 150704, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600981

RESUMEN

To fully understand the characteristics of particulate matter (PM) retained on plant leaves (PMR) and the effect of vegetation on haze on a large spatial scale, we investigated needle samples collected from 78 parks and campuses in 31 cities (30 provincial cities) of China and developed a comprehensive method to characterise PMR. Both the PMR load (including water-insoluble particulate matter (WIPM), water-soluble inorganic ions (WSIS) and water-soluble organic matter (WSOM)), with a mean value of 554 ± 345 mg m-2 leaf area, and component profiles of PMR showed obvious spatial variation across the cities. Though haze pollution levels vary greatly among the 31 cities, the PM retention capacity of needles does not depend on haze level because PMR generally reaches saturation before precipitation in winter. The water-soluble component (WSC, the sum of WSIS and WSOM) accounted for 52.3% of PMR on average, among which WSIS and WSOM contributed 21.4% and 30.9% to PMR, respectively. The dominant ions of WSIS in PMR in the cities were Ca2+, K+ and NO3-, indicating that raised dust, biomass combustion and traffic exhaust are significant sources of PM in China. Compared with previous reports, the particle size distributions of PMR and PM across China were consistent, with fine PM (PM2.5) constituting a substantial proportion (43.8 ± 17.0%) of PMR. These results prove that trees can effectively remove fine particles from the air, thereby reducing human exposure to inhalable PM. We proposed a method to estimate the annual amount of PMR on Cedrus deodara, with an average value of 11.9 ± 9.6 t km-2 canopy yr-1 in China. Compared with the load of dust fall (atmospheric particles naturally falling on the ground, average of 138 ± 164 t km-2 land area yr-1 in China), we conclude that trees play a significant role in mitigating haze pollution.


Asunto(s)
Contaminantes Atmosféricos , Tracheophyta , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Ciudades , Monitoreo del Ambiente , Humanos , Agujas , Tamaño de la Partícula , Material Particulado/análisis , Estaciones del Año , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA