Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Biol ; 21(1): 68, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013569

RESUMEN

BACKGROUND: The accumulation of fatty acids in plants covers a wide range of functions in plant physiology and thereby affects adaptations and characteristics of species. As the famous woody oilseed crop, Acer truncatum accumulates unsaturated fatty acids and could serve as the model to understand the regulation and trait formation in oil-accumulation crops. Here, we performed Ribosome footprint profiling combing with a multi-omics strategy towards vital time points during seed development, and finally constructed systematic profiling from transcription to proteomes. Additionally, we characterized the small open reading frames (ORFs) and revealed that the translational efficiencies of focused genes were highly influenced by their sequence features. RESULTS: The comprehensive multi-omics analysis of lipid metabolism was conducted in A. truncatum. We applied the Ribo-seq and RNA-seq techniques, and the analyses of transcriptional and translational profiles of seeds collected at 85 and 115 DAF were compared. Key members of biosynthesis-related structural genes (LACS, FAD2, FAD3, and KCS) were characterized fully. More meaningfully, the regulators (MYB, ABI, bZIP, and Dof) were identified and revealed to affect lipid biosynthesis via post-translational regulations. The translational features results showed that translation efficiency tended to be lower for the genes with a translated uORF than for the genes with a non-translated uORF. They provide new insights into the global mechanisms underlying the developmental regulation of lipid metabolism. CONCLUSIONS: We performed Ribosome footprint profiling combing with a multi-omics strategy in A. truncatum seed development, which provides an example of the use of Ribosome footprint profiling in deciphering the complex regulation network and will be useful for elucidating the metabolism of A. truncatum seed oil and the regulatory mechanisms.


Asunto(s)
Acer , Ácidos Grasos , Ácidos Grasos/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Acer/genética , Acer/metabolismo , Ribosomas/metabolismo , Semillas/genética , Regulación de la Expresión Génica de las Plantas
2.
BMC Plant Biol ; 22(1): 589, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526968

RESUMEN

BACKGROUND: Ornamental trees with seasonally-dependent leaf color, such as Acer palmatum, have gained worldwide popularity. Leaf color is a main determinant of the ornamental and economic value of A. palmatum. However, the molecular mechanisms responsible for leaf color changes remain unclear. RESULTS: We chose A. palmatum cultivars with yellow ('Jinling Huangfeng') and red ('Jinling Danfeng') leaves as the ideal material for studying the complex metabolic networks responsible for variations in leaf coloration. The 24 libraries obtained from four different time points in the growth of 'Jinling Huangfeng' and 'Jinling Danfeng' was subjected to Illumina high-throughput sequencing. We observed that the difference in cyanidin and delphinidin content is the primary reason behind the varying coloration of the leaves. Transcriptomic analyses revealed 225,684 unigenes, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes (DEGs) confirmed that they were involved in 'anthocyanin biosynthesis.' Eighteen structural genes involved in anthocyanin biosynthesis were thought to be related to anthocyanin accumulation, whereas 46 MYBs, 33 basic helix-loop-helixs (bHLHs), and 29 WD40s were presumed to be involved in regulating anthocyanin biosynthesis. Based on weighted gene co-expression network analysis (WGCNA), three candidate genes (ApRHOMBOID, ApMAPK, and ApUNE10) were screened in the significant association module with a correlation coefficient (r2) of 0.86. CONCLUSION: In this study, the leaf color changes of two A. palmatum genotypes were analyzed. These findings provide novel insights into variations in leaf coloration and suggest pathways for targeted genetic improvements in A. palmatum.


Asunto(s)
Acer , Antocianinas , Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Pigmentación/genética , Perfilación de la Expresión Génica , Genotipo , Transcriptoma , Color
3.
BMC Plant Biol ; 22(1): 29, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35026989

RESUMEN

BACKGROUND: Acer truncatum (purpleblow maple) is a woody tree species that produces seeds with high levels of valuable fatty acids (especially nervonic acid). The species is admired as a landscape plant with high developmental prospects and scientific research value. The A. truncatum chloroplast genome has recently been reported; however, the mitochondrial genome (mitogenome) is still unexplored. RESULTS: We characterized the A. truncatum mitogenome, which was assembled using reads from PacBio and Illumina sequencing platforms, performed a comparative analysis against different species of Acer. The circular mitogenome of A. truncatum has a length of 791,052 bp, with a base composition of 27.11% A, 27.21% T, 22.79% G, and 22.89% C. The A. truncatum mitogenome contains 62 genes, including 35 protein-coding genes, 23 tRNA genes and 4 rRNA genes. We also examined codon usage, sequence repeats, RNA editing and selective pressure in the A. truncatum mitogenome. To determine the evolutionary and taxonomic status of A. truncatum, we conducted a phylogenetic analysis based on the mitogenomes of A. truncatum and 25 other taxa. In addition, the gene migration from chloroplast and nuclear genomes to the mitogenome were analyzed. Finally, we developed a novel NAD1 intron indel marker for distinguishing several Acer species. CONCLUSIONS: In this study, we assembled and annotated the mitogenome of A. truncatum, a woody oil-tree species producing nervonic acid. The results of our analyses provide comprehensive information on the A. truncatum mitogenome, which would facilitate evolutionary research and molecular barcoding in Acer.


Asunto(s)
Acer/genética , Acer/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Genoma Mitocondrial , Aceites de Plantas/metabolismo , Árboles/genética , Variación Genética , Filogenia
4.
Plant J ; 104(3): 662-678, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32772482

RESUMEN

Acer truncatum (purpleblow maple) is a woody tree species that produces seeds with high levels of valuable fatty acids (especially nervonic acid). However, the lack of a complete genome sequence has limited both basic and applied research on A. truncatum. We describe a high-quality draft genome assembly comprising 633.28 Mb (contig N50 = 773.17 kb; scaffold N50 = 46.36 Mb) with at least 28 438 predicted genes. The genome underwent an ancient triplication, similar to the core eudicots, but there have been no recent whole-genome duplication events. Acer yangbiense and A. truncatum are estimated to have diverged about 9.4 million years ago. A combined genomic, transcriptomic, metabonomic, and cell ultrastructural analysis provided new insights into the biosynthesis of very long-chain monounsaturated fatty acids. In addition, three KCS genes were found that may contribute to regulating nervonic acid biosynthesis. The KCS paralogous gene family expanded to 28 members, with 10 genes clustered together and distributed in the 0.27-Mb region of pseudochromosome 4. Our chromosome-scale genomic characterization may facilitate the discovery of agronomically important genes and stimulate functional genetic research on A. truncatum. Furthermore, the data presented also offer important foundations from which to study the molecular mechanisms influencing the production of nervonic acids.


Asunto(s)
Acer/genética , Ácidos Grasos Monoinsaturados/metabolismo , Genoma de Planta , Acer/metabolismo , Centrómero/genética , Elementos Transponibles de ADN , Ácidos Grasos/biosíntesis , Ácidos Grasos/genética , Regulación de la Expresión Génica de las Plantas , Genómica/métodos , Heterocigoto , Filogenia , Proteínas de Plantas/genética , Semillas/genética , Semillas/metabolismo , Secuenciación Completa del Genoma
5.
Biomed Res Int ; 2019: 7417239, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31886246

RESUMEN

Acer truncatum, which is a new woody oil tree species, is an important ornamental and medicinal plant in China. To assess the genetic diversity and relationships of A. truncatum, we analyzed its complete chloroplast (cp) genome sequence. The A. truncatum cp genome comprises 156,492 bp, with the large single-copy, small single-copy, and inverted repeat (IR) regions consisting of 86,010, 18,050, and 26,216 bp, respectively. The A. truncatum cp genome contains 112 unique functional genes (i.e., 4 rRNA, 30 tRNA, and 78 protein-coding genes) as well as 78 simple sequence repeats, 9 forward repeats, 1 reverse repeat, 5 palindromic repeats, and 7 tandem repeats. We analyzed the expansion/contraction of the IR regions in the cp genomes of six Acer species. A comparison of these cp genomes indicated the noncoding regions were more diverse than the coding regions. A phylogenetic analysis revealed that A. truncatum is closely related to A. miaotaiense. Moreover, a novel ycf4-cemA indel marker was developed for distinguishing several Acer species (i.e., A. buergerianum, A. truncatum, A. henryi, A. negundo, A. ginnala, and A. tonkinense). The results of the current study provide valuable information for future evolutionary studies and the molecular barcoding of Acer species.


Asunto(s)
Acer/genética , Ácidos Grasos Monoinsaturados/metabolismo , Genoma del Cloroplasto , Aceites de Plantas/metabolismo , Árboles/genética , Madera/genética , Genes de Plantas , Marcadores Genéticos , Variación Genética , Funciones de Verosimilitud , Repeticiones de Microsatélite/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA