RESUMEN
Proxy reconstructions from marine sediment cores indicate peak temperatures in the first half of the last and current interglacial periods (the thermal maxima of the Holocene epoch, 10,000 to 6,000 years ago, and the last interglacial period, 128,000 to 123,000 years ago) that arguably exceed modern warmth1-3. By contrast, climate models simulate monotonic warming throughout both periods4-7. This substantial model-data discrepancy undermines confidence in both proxy reconstructions and climate models, and inhibits a mechanistic understanding of recent climate change. Here we show that previous global reconstructions of temperature in the Holocene1-3 and the last interglacial period8 reflect the evolution of seasonal, rather than annual, temperatures and we develop a method of transforming them to mean annual temperatures. We further demonstrate that global mean annual sea surface temperatures have been steadily increasing since the start of the Holocene (about 12,000 years ago), first in response to retreating ice sheets (12 to 6.5 thousand years ago), and then as a result of rising greenhouse gas concentrations (0.25 ± 0.21 degrees Celsius over the past 6,500 years or so). However, mean annual temperatures during the last interglacial period were stable and warmer than estimates of temperatures during the Holocene, and we attribute this to the near-constant greenhouse gas levels and the reduced extent of ice sheets. We therefore argue that the climate of the Holocene differed from that of the last interglacial period in two ways: first, larger remnant glacial ice sheets acted to cool the early Holocene, and second, rising greenhouse gas levels in the late Holocene warmed the planet. Furthermore, our reconstructions demonstrate that the modern global temperature has exceeded annual levels over the past 12,000 years and probably approaches the warmth of the last interglacial period (128,000 to 115,000 years ago).
Asunto(s)
Calentamiento Global/historia , Calor , Cubierta de Hielo , Estaciones del Año , Calcio/análisis , Foraminíferos/química , Efecto Invernadero/historia , Historia Antigua , Magnesio/análisis , Océano Pacífico , Plancton/química , Reproducibilidad de los Resultados , Agua de Mar/análisis , Agua de Mar/químicaRESUMEN
We assembled the 9.8-Gbp genome of western redcedar (WRC; Thuja plicata), an ecologically and economically important conifer species of the Cupressaceae. The genome assembly, derived from a uniquely inbred tree produced through five generations of self-fertilization (selfing), was determined to be 86% complete by BUSCO analysis, one of the most complete genome assemblies for a conifer. Population genomic analysis revealed WRC to be one of the most genetically depauperate wild plant species, with an effective population size of approximately 300 and no significant genetic differentiation across its geographic range. Nucleotide diversity, π, is low for a continuous tree species, with many loci showing zero diversity, and the ratio of π at zero- to fourfold degenerate sites is relatively high (approximately 0.33), suggestive of weak purifying selection. Using an array of genetic lines derived from up to five generations of selfing, we explored the relationship between genetic diversity and mating system. Although overall heterozygosity was found to decline faster than expected during selfing, heterozygosity persisted at many loci, and nearly 100 loci were found to deviate from expectations of genetic drift, suggestive of associative overdominance. Nonreference alleles at such loci often harbor deleterious mutations and are rare in natural populations, implying that balanced polymorphisms are maintained by linkage to dominant beneficial alleles. This may account for how WRC remains responsive to natural and artificial selection, despite low genetic diversity.
Asunto(s)
Tracheophyta , Tracheophyta/genética , Autofecundación/genética , Alelos , Heterocigoto , Polimorfismo Genético , Variación Genética , Selección GenéticaRESUMEN
Mn-based fluorophosphates have attracted much attention as cathodes for sodium-ion batteries owing to their high cost effectiveness, considerable capacity, and stable framework. However, the fascinating Mn3+/2+ redox couple suffers from inadequate activation due to the Mn-O covalent character and poor electronic conductivity, impeding its further applications. Herein, a local electronic structure regulation strategy is proposed to improve the Mn3+/2+ redox potential and reversible capacity simultaneously through introducing elements with low-energy 3d orbitals to expand the energy gap between the eg orbitals and Fermi energy of Na. Moreover, the 3d element substitution serves to narrow the band gap toward the improved intrinsic electronic conductivity. In comparison with pristine Na2Fe0.45Mn0.55PO4F, the as-prepared Na2Fe0.45Mn0.4V0.1PO4F cathode achieves an increase from 3.5 to 3.6 V in the high-voltage platform and an improvement in energy density from 330 to 361 Wh kg-1. This work inspires new ideas in adjusting the redox potential of polyanionic cathodes through deliberate regulation of the local electronic structure.
RESUMEN
A highly reversible zinc anode is crucial for the commercialization of zinc-ion batteries. However, the change in the microstructure of the electric double layer originated from the dynamic change in charge density on the electrode greatly impacts anode reversibility during charge/discharge, which is rarely considered in previous research. Herein, the zwitterion additive is employed to create an adaptive interface by coupling the transient zwitterion dynamics upon the change of interfacial charge density. Ab initio molecular dynamics simulations suggest the molecular orientation and adsorption groups of zwitterions will be determined by the charging state of the electrode. ZnSO4 electrolyte with zwitterion fulfills a highly reversible Zn anode with an average Coulombic efficiency of up to 99.85%. Zn/Zn symmetric cells achieve greatly enhanced cycling stability for 700 h with extremely small voltage hysteresis of 29 mV under 5 mA cm-2 with 5 mAh cm-2 . This study validates the adaptive interface based on transient dynamics of zwitterions, which sheds new light on developing highly reversible metal anodes with a high utilization rate.
RESUMEN
Phyllosticta citricarpa is an important citrus-pathogen and a quarantine organism in the European Union. Its recently described relative, P. paracitricarpa, is very closely related and not listed as a quarantine organism. P. paracitricarpa is very difficult to distinguish from P. citricarpa, since its morphological features overlap and the barcoding gene sequences that were originally used to delimit them as distinct species have a low number of species-specific polymorphisms that have subsequently been shown to overlap between the two clades. Therefore, we performed extensive genomic analyses to determine whether the genetic variation between P. citricarpa and P. paracitricarpa strains should be considered to represent infraspecific variation within P. citricarpa, or whether it is indicative of distinct species. Using a phylogenomic analysis with 3,000 single copy ortholog genes and whole-genome comparisons, we determined that the variation between P. citricarpa and P. paracitricarpa can be considered as infraspecies variation within P. citricarpa. We also determined the level of variation in mitochondrial assemblies of several Phyllosticta species and concluded there are only minimal differences between the assemblies of P. citricarpa and P. paracitricarpa. Thus, using several orthogonal approaches, we here demonstrate that variation within the nuclear and mitochondrial genomes of other Phyllosticta species is larger than variation between genomes obtained from P. citricarpa and P. paracitricarpa strains. Thus, P. citricarpa and P. paracitricarpa should be considered as conspecific.
RESUMEN
Given the multitude of extracellular enzymes at their disposal, many of which are designed to degrade nature's polymers (lignin, cutin, cellulose, etc.), fungi are adept at targeting synthetic polyesters with similar chemical composition. Microbial-influenced deterioration of xenobiotic polymeric surfaces is an area of interest for material scientists as these are important for the conservation of the underlying structural materials. Here, we describe the isolation and characterization of the Papiliotrema laurentii 5307AH (P. laurentii) cutinase, Plcut1. P. laurentii is basidiomycete yeast with the ability to disperse Impranil-DLN (Impranil), a colloidal polyester polyurethane, in agar plates. To test whether the fungal factor involved in this clearing was a secreted enzyme, we screened the ability of P. laurentii culture supernatants to disperse Impranil. Using size exclusion chromatography (SEC), we isolated fractions that contained Impranil-clearing activity. These fractions harbored a single ~22 kD band, which was excised and subjected to peptide sequencing. Homology searches using the peptide sequences identified, revealed that the protein Papla1 543643 (Plcut1) displays similarities to serine esterase and cutinase family of proteins. Biochemical assays using recombinant Plcut1 confirmed that this enzyme has the capability to hydrolyze Impranil, soluble esterase substrates, and apple cutin. Finally, we confirmed the presence of the Plcut1 in culture supernatants using a custom antibody that specifically recognizes this protein. The work shown here supports a major role for the Plcut1 in the fungal degradation of natural polyesters and xenobiotic polymer surfaces.IMPORTANCEFungi play a vital role in the execution of a broad range of biological processes that drive ecosystem function through production of a diverse arsenal of enzymes. However, the universal reactivity of these enzymes is a current problem for the built environment and the undesired degradation of polymeric materials in protective coatings. Here, we report the identification and characterization of a hydrolase from Papiliotrema laurentii 5307AH, an aircraft-derived fungal isolate found colonizing a biodeteriorated polymer-coated surface. We show that P. laurentii secretes a cutinase capable of hydrolyzing soluble esters as well as ester-based compounds forming solid surface coatings. These findings indicate that this fungus plays a significant role in biodeterioration through the production of a cutinase adept at degrading ester-based polymers, some of which form the backbone of protective surface coatings. The work shown here provides insights into the mechanisms employed by fungi to degrade xenobiotic polymers.
Asunto(s)
Hidrolasas de Éster Carboxílico , Proteínas Fúngicas , Poliésteres , Proteínas Recombinantes , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Poliésteres/metabolismo , HidrólisisRESUMEN
BACKGROUND: Strong public support can increase the likelihood of adopting tobacco control policies. We assessed support for six commercial tobacco endgame policies in South Korea: limiting the nicotine in cigarettes, banning all additives in cigarettes, restricting the number of places where cigarettes are sold, and banning the manufacture and sales of cigarettes (unconditionally, with the provision of cessation support and with alternative tobacco products available). METHODS: Data were obtained from 4740 adults who completed the 2020 International Tobacco Control Korea Survey. Participants were categorised based on their nicotine use: (1) did not use any products, (2) vaped and/or used heated tobacco products (HTPs) but did not smoke cigarettes, (3) smoked cigarettes only and (4) smoked cigarettes and vaped and/or used HTPs. Attitudes towards the policies were classified as supportive, undecided or opposed. Weighted multinomial logistic regression models assessed support levels according to nicotine use. RESULTS: Support was highest for limiting the nicotine content in cigarettes (68.4%; 95% CI 64.6% to 72.3%) and restricting the number of retailers (68.1%; 95% CI 64.5% to 71.7%), and lowest for banning cigarette sales if alternative products are made available (45.0%; 95% CI 40.9% to 49.1%). People who did not use any products were most likely to support endgame policies, except for banning cigarette sales with alternatives available. The proportion of undecided participants exceeded 10% (range 13%-25%) for all policies. CONCLUSION: There is a strong public support for tobacco endgame policies in South Korea. Further research should prioritise the development of strategies to ensure the effective implementation of highly supported policies.
RESUMEN
Asian summer monsoon (ASM) variability and its long-term ecological and societal impacts extending back to Neolithic times are poorly understood due to a lack of high-resolution climate proxy data. Here, we present a precisely dated and well-calibrated tree-ring stable isotope chronology from the Tibetan Plateau with 1- to 5-y resolution that reflects high- to low-frequency ASM variability from 4680 BCE to 2011 CE. Superimposed on a persistent drying trend since the mid-Holocene, a rapid decrease in moisture availability between â¼2000 and â¼1500 BCE caused a dry hydroclimatic regime from â¼1675 to â¼1185 BCE, with mean precipitation estimated at 42 ± 4% and 5 ± 2% lower than during the mid-Holocene and the instrumental period, respectively. This second-millennium-BCE megadrought marks the mid-to late Holocene transition, during which regional forests declined and enhanced aeolian activity affected northern Chinese ecosystems. We argue that this abrupt aridification starting â¼2000 BCE contributed to the shift of Neolithic cultures in northern China and likely triggered human migration and societal transformation.
RESUMEN
Slippery surfaces can enrich analytes from solutions into tiny dots after solvent evaporation for surface-enhanced Raman scattering (SERS) detection. Here, we make the self-assembled Au nanosphere monolayers slippery, which can not only behave as SERS substrates but also enrich the analytes during solvent evaporation. A thin silica shell was used to wrap the Au nanosphere monolayer to allow the functionalization of a slippery polydimethylsiloxane brush monolayer onto it. These slippery Au nanosphere monolayers could be easily cleaned and reused many times. When Au nanospheres were introduced into the analyte solution droplet on the slippery Au nanosphere monolayer, a 3D Au nanoparticle/analyte aggregate was formed after solvent evaporation. Both the Au nanoparticle aggregate and the underneath slippery Au nanosphere monolayer could contribute to SERS enhancement. We endow the self-assembled Au nanosphere monolayer SERS substrates with an analyte enrichment function, greatly strengthening their SERS enhancement.
RESUMEN
Photocatalytic CH4 oxidation to CH3OH emerges as a promising strategy to sustainably utilize natural gas and mitigate the greenhouse effect. However, there remains a significant challenge for the synthesis of methanol by using O2 at low temperature. Inspired by the catalytic structure in soluble methane monooxygenase (MMO) and the corresponding reaction mechanism, we prepared a biomimetic photocatalysts with the decoration of Fe2O3 nanocluster and satellite Fe single atom immobilized on carbon nitride. The catalyst demonstrates an excellent CH3OH productivity of 5.02 mmol·gcat-1·h-1 with methanol selectivity of 98.5%. Mechanism studies reveal that the synergy between Fe2O3 nanocluster and Fe single atom establishes a dual-Fe site as MMO for O2 activation and subsequent CH4 partial oxidation. Moreover, the light excitation of Fe2O3 nanoclusters with a relative narrow bandgap could deliver the electrons and protons to atomic Fe that facilitating the oxygen reduction kinetics for the robust of methanol synthesis.
RESUMEN
The order Sordariales is taxonomically diverse, and harbours many species with different lifestyles and large economic importance. Despite its importance, a robust genome-scale phylogeny, and associated comparative genomic analysis of the order is lacking. In this study, we examined whole-genome data from 99 Sordariales, including 52 newly sequenced genomes, and seven outgroup taxa. We inferred a comprehensive phylogeny that resolved several contentious relationships amongst families in the order, and cleared-up intrafamily relationships within the Podosporaceae. Extensive comparative genomics showed that genomes from the three largest families in the dataset (Chaetomiaceae, Podosporaceae and Sordariaceae) differ greatly in GC content, genome size, gene number, repeat percentage, evolutionary rate, and genome content affected by repeat-induced point mutations (RIP). All genomic traits showed phylogenetic signal, and ancestral state reconstruction revealed that the variation of the properties stems primarily from within-family evolution. Together, the results provide a thorough framework for understanding genome evolution in this important group of fungi.
Asunto(s)
Genómica , Sordariales , Humanos , Filogenia , Genómica/métodos , Genoma , Sordariales/genética , Secuencia de Bases , Evolución MolecularRESUMEN
The ability to harness charges and spins for control of organic excitonic states is critical in developing high-performance organic luminophores and optoelectronic devices. Here we report a facile strategy to efficiently manipulate the electronic energy states of various organic phosphors by coupling them with inorganic lanthanide nanocrystals. We show that the metallic atoms exposed on the nanocrystal surface can introduce strong coupling effects to 9-(4-ethoxy-6-phenyl-1,3,5-triazin-2-yl)-9H-carbazole (OCzT) and some organic chromophores with carbazole functional groups when the organics are approaching the nanocrystals. This unconventional organic-inorganic hybridization enables a nearly 100 % conversion of the singlet excitation to fast charge transfer luminescence that does not exist in pristine organics, which broadens the utility of organic phosphors in hybrid systems.
RESUMEN
As actors of global carbon cycle, Agaricomycetes (Basidiomycota) have developed complex enzymatic machineries that allow them to decompose all plant polymers, including lignin. Among them, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles. Comparative analysis of 52 Agaricomycetes genomes (14 of them sequenced de novo) reveals that Agaricales possess a large diversity of hydrolytic and oxidative enzymes for lignocellulose decay. Based on the gene families with the predicted highest evolutionary rates-namely cellulose-binding CBM1, glycoside hydrolase GH43, lytic polysaccharide monooxygenase AA9, class-II peroxidases, glucose-methanol-choline oxidase/dehydrogenases, laccases, and unspecific peroxygenases-we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. The changes in the enzymatic toolkit of ancestral Agaricales are correlated with the evolution of their ability to grow not only on wood but also on leaf litter and decayed wood, with grass-litter decomposers as the most recent eco-physiological group. In this context, the above families were analyzed in detail in connection with lifestyle diversity. Peroxidases appear as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes, consistent with their essential role in lignin degradation and high evolutionary rates. This includes not only expansions/losses in peroxidase genes common to other basidiomycetes but also the widespread presence in Agaricales (and Russulales) of new peroxidases types not found in wood-rotting Polyporales, and other Agaricomycetes orders. Therefore, we analyzed the peroxidase evolution in Agaricomycetes by ancestral-sequence reconstruction revealing several major evolutionary pathways and mapped the appearance of the different enzyme types in a time-calibrated species tree.
Asunto(s)
Agaricales/genética , Genoma Fúngico , Lignina/metabolismo , Peroxidasas/genética , Filogenia , Agaricales/enzimología , Ecosistema , Familia de Multigenes , Peroxidasas/metabolismoRESUMEN
Solid electrolytes are considered as an ideal substitution of liquid electrolytes, avoiding the potential hazards of volatilization, flammability, and explosion for liquid electrolyte-based rechargeable batteries. However, there are significant performance gaps to be bridged between solid electrolytes and liquid electrolytes; one with a particular importance is the ionic conductivity which is highly dependent on the material types and structures. In this review, the general physical image of ion hopping in the crystalline structure is revisited, by highlighting two main kernels that impact ion migration: ion hopping pathways and skeletons interaction. The universal strategies to effectively improve ionic conductivity of inorganic solid electrolytes are then systematically summarized: constructing rapid diffusion pathways for mobile ions; and reducing resistance of the surrounding potential field. The scoped strategies offer an exclusive view on the working principle of ion movement regardless of the ion species, thus providing a comprehensive guidance for the future exploitation of solid electrolytes.
RESUMEN
The electrochemical conversion reaction, usually featured by multiple redox processes and high specific capacity, holds great promise in developing high-energy rechargeable battery technologies. However, the complete structural change accompanied by spontaneous atomic migration and volume variation during the charge/discharge cycle leads to electrode disintegration and performance degradation, therefore severely restricting the application of conventional conversion-type electrodes. Herein, latticed-confined conversion chemistry is proposed, where the "intercalation-like" redox behavior is realized on the electrode with a "conversion-like" high capacity. By delicately formulating the high-entropy compounds, the pristine crystal structure can be preserved by the inert lattice framework, thus enabling an ultra-high initial Coulombic efficiency of 92.5% and a long cycling lifespan over a thousand cycles after the quasistatic charge-discharge cycle. This lattice-confined conversion chemistry unfolds a ubiquitous insight into the localized redox reaction and sheds light on developing high-performance electrodes toward next-generation high-energy rechargeable batteries.
Asunto(s)
Líquidos Corporales , Suministros de Energía Eléctrica , Electrodos , EntropíaRESUMEN
Wildfires drastically impact the soil environment, altering the soil organic matter, forming pyrolyzed compounds, and markedly reducing the diversity of microorganisms. Pyrophilous fungi, especially the species from the orders Pezizales and Agaricales, are fire-responsive fungal colonizers of post-fire soil that have historically been found fruiting on burned soil and thus may encode mechanisms of processing these compounds in their genomes. Pyrophilous fungi are diverse. In this work, we explored this diversity and sequenced six new genomes of pyrophilous Pezizales fungi isolated after the 2013 Rim Fire near Yosemite Park in California, USA: Pyronema domesticum, Pyronema omphalodes, Tricharina praecox, Geopyxis carbonaria, Morchella snyderi, and Peziza echinospora. A comparative genomics analysis revealed the enrichment of gene families involved in responses to stress and the degradation of pyrolyzed organic matter. In addition, we found that both protein sequence lengths and G + C content in the third base of codons (GC3) in pyrophilous fungi fall between those in mesophilic/nonpyrophilous and thermophilic fungi. A comparative transcriptome analysis of P. domesticum under two conditions - growing on charcoal, and during sexual development - identified modules of genes that are co-expressed in the charcoal and light-induced sexual development conditions. In addition, environmental sensors such as transcription factors STE12, LreA, LreB, VosA, and EsdC were upregulated in the charcoal condition. Taken together, these results highlight genomic adaptations of pyrophilous fungi and indicate a potential connection between charcoal tolerance and fruiting body formation in P. domesticum.
Asunto(s)
Carbón Orgánico , Genómica , Hongos , Desarrollo Sexual , Suelo , Factores de TranscripciónRESUMEN
BACKGROUND: Depression is the most common mental disorder in patients with advanced cancer, which may lead to poor prognosis and low survival rate. This study aims to explore the serial multiple mediating roles of social support and spiritual coping between hope and depression among patients with advanced cancer. METHODS: A cross-sectional study was conducted in China between May and August 2020. A total of 442 advanced cancer patients were investigated by the following self-reported questionnaires: Herth Hope Index (HHI), Spiritual Coping Questionnaire (SCQ, Chinese version), Social Support Rating Scale (SSRS), Hospital Anxiety and Depression Scale (HADS). RESULTS: Depression was negatively correlated with hope, social support, and positive spiritual coping (P < 0.01), and positively correlated with negative spiritual coping (P < 0.01). Hope explained 16.0% of the variance in depression. Bootstrap analyses of the hope--social support--positive spiritual coping--depression showed that there were direct [B = -0.220, 95%CI(- 0.354, - 0.072)] and indirect effects of hope on depression mediated solely by social support [B = -0.122, 95%CI(- 0.200, - 0.066)] and positive spiritual coping [B = -0.112, 95%CI(- 0.217,-0.025)], or by both together [B = -0.014, 95%CI(- 0.038,-0.003)]. Similarly, the hope--social support--negative spiritual coping--depression showed that there were direct [B = -0.302, 95%CI(- 0.404, - 0.190)] and indirect effects of hope on depression mediated solely by social support [B = -0.126, 95%CI(- 0.205, - 0.071)] and negative spiritual coping [B = -0.033, 95%CI(- 0.080,-0.002)], or by both together [B = -0.010, 95%CI(- 0.030,-0.001)]. CONCLUSIONS: This study proves the hypothesis that social support and spiritual coping play intermediary roles between hope and depression. Interventions established through hope, social support and spiritual coping can effectively prevent depression from occurring.
Asunto(s)
Depresión , Neoplasias , Adaptación Psicológica , Estudios Transversales , Humanos , Apoyo Social , Espiritualidad , Encuestas y CuestionariosRESUMEN
Shrub willows (Salix spp.) are emerging as a viable lignocellulosic, second-generation bioenergy crop with many growth characteristics favorable for marginal lands in New York State and surrounding areas. Willow rust, caused by members of the genus Melampsora, is the most limiting disease of shrub willow in this region and remains extremely understudied. In this study, genetic diversity, genetic structure, and pathogen clonality were examined in Melampsora americana over two growing seasons via genotyping-by-sequencing to identify single-nucleotide polymorphism markers. In conjunction with this project, a reference genome of rust isolate R15-033-03 was generated to aid in variant discovery. Sampling between years allowed regional and site-specific investigation into population dynamics, in the context of both wild and cultivated hosts within high-density plantings. This work revealed that this pathogen is largely panmictic over the sampled areas, with few sites showing moderate genetic differentiation. These data support the hypothesis of sexual recombination between growing seasons because no genotype persisted across the two years of sampling. Additionally, clonality was determined as a driver of pathogen populations within cultivated fields and single shrubs; however, there is also evidence of high genetic diversity of rust isolates in all settings. This work provides a framework for M. americana population structure in the Great Lakes region, providing crucial information that can aid in future resistance breeding efforts.