Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Cell ; 187(7): 1733-1744.e12, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38552612

RESUMEN

Mastigonemes, the hair-like lateral appendages lining cilia or flagella, participate in mechanosensation and cellular motion, but their constituents and structure have remained unclear. Here, we report the cryo-EM structure of native mastigonemes isolated from Chlamydomonas at 3.0 Å resolution. The long stem assembles as a super spiral, with each helical turn comprising four pairs of anti-parallel mastigoneme-like protein 1 (Mst1). A large array of arabinoglycans, which represents a common class of glycosylation in plants and algae, is resolved surrounding the type II poly-hydroxyproline (Hyp) helix in Mst1. The EM map unveils a mastigoneme axial protein (Mstax) that is rich in heavily glycosylated Hyp and contains a PKD2-like transmembrane domain (TMD). Mstax, with nearly 8,000 residues spanning from the intracellular region to the distal end of the mastigoneme, provides the framework for Mst1 assembly. Our study provides insights into the complexity of protein and glycan interactions in native bio-architectures.


Asunto(s)
Chlamydomonas , Cilios , Chlamydomonas/citología , Cilios/química , Cilios/ultraestructura , Flagelos , Polisacáridos , Proteínas
2.
Cell ; 186(24): 5363-5374.e16, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37972591

RESUMEN

Cav1.2 channels play crucial roles in various neuronal and physiological processes. Here, we present cryo-EM structures of human Cav1.2, both in its apo form and in complex with several drugs, as well as the peptide neurotoxin calciseptine. Most structures, apo or bound to calciseptine, amlodipine, or a combination of amiodarone and sofosbuvir, exhibit a consistent inactivated conformation with a sealed gate, three up voltage-sensing domains (VSDs), and a down VSDII. Calciseptine sits on the shoulder of the pore domain, away from the permeation path. In contrast, when pinaverium bromide, an antispasmodic drug, is inserted into a cavity reminiscent of the IFM-binding site in Nav channels, a series of structural changes occur, including upward movement of VSDII coupled with dilation of the selectivity filter and its surrounding segments in repeat III. Meanwhile, S4-5III merges with S5III to become a single helix, resulting in a widened but still non-conductive intracellular gate.


Asunto(s)
Canales de Calcio Tipo L , Venenos Elapídicos , Humanos , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/metabolismo , Neurotoxinas , Dominios Proteicos , Microscopía por Crioelectrón
3.
Cell ; 185(15): 2617-2620, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868264

RESUMEN

With recent dramatic advances in various techniques used for protein structure research, we asked researchers to comment on the next exciting questions for the field and about how these techniques will advance our knowledge not only about proteins but also about human health and diseases.

4.
Cell ; 185(25): 4801-4810.e13, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36417914

RESUMEN

Drug-drug interaction of the antiviral sofosbuvir and the antiarrhythmics amiodarone has been reported to cause fatal heartbeat slowing. Sofosbuvir and its analog, MNI-1, were reported to potentiate the inhibition of cardiomyocyte calcium handling by amiodarone, which functions as a multi-channel antagonist, and implicate its inhibitory effect on L-type Cav channels, but the molecular mechanism has remained unclear. Here we present systematic cryo-EM structural analysis of Cav1.1 and Cav1.3 treated with amiodarone or sofosbuvir alone, or sofosbuvir/MNI-1 combined with amiodarone. Whereas amiodarone alone occupies the dihydropyridine binding site, sofosbuvir is not found in the channel when applied on its own. In the presence of amiodarone, sofosbuvir/MNI-1 is anchored in the central cavity of the pore domain through specific interaction with amiodarone and directly obstructs the ion permeation path. Our study reveals the molecular basis for the physical, pharmacodynamic interaction of two drugs on the scaffold of Cav channels.


Asunto(s)
Amiodarona , Sofosbuvir , Sofosbuvir/efectos adversos , Amiodarona/farmacología , Antivirales/farmacología , Miocitos Cardíacos/metabolismo , Sitios de Unión , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo
5.
Cell ; 182(1): 98-111.e18, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32544384

RESUMEN

Lysosomal cholesterol egress requires two proteins, NPC1 and NPC2, whose defects are responsible for Niemann-Pick disease type C (NPC). Here, we present systematic structural characterizations that reveal the molecular basis for low-pH-dependent cholesterol delivery from NPC2 to the transmembrane (TM) domain of NPC1. At pH 8.0, similar structures of NPC1 were obtained in nanodiscs and in detergent at resolutions of 3.6 Å and 3.0 Å, respectively. A tunnel connecting the N-terminal domain (NTD) and the transmembrane sterol-sensing domain (SSD) was unveiled. At pH 5.5, the NTD exhibits two conformations, suggesting the motion for cholesterol delivery to the tunnel. A putative cholesterol molecule is found at the membrane boundary of the tunnel, and TM2 moves toward formation of a surface pocket on the SSD. Finally, the structure of the NPC1-NPC2 complex at 4.0 Å resolution was obtained at pH 5.5, elucidating the molecular basis for cholesterol handoff from NPC2 to NPC1(NTD).


Asunto(s)
Colesterol/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Nanopartículas/química , Nanopartículas/ultraestructura , Proteína Niemann-Pick C1 , Dominios Proteicos , Homología Estructural de Proteína , Relación Estructura-Actividad
6.
Cell ; 183(1): 258-268.e12, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32860739

RESUMEN

Plasmodium species, the causative agent of malaria, rely on glucose for energy supply during blood stage. Inhibition of glucose uptake thus represents a potential strategy for the development of antimalarial drugs. Here, we present the crystal structures of PfHT1, the sole hexose transporter in the genome of Plasmodium species, at resolutions of 2.6 Å in complex with D-glucose and 3.7 Å with a moderately selective inhibitor, C3361. Although both structures exhibit occluded conformations, binding of C3361 induces marked rearrangements that result in an additional pocket. This inhibitor-binding-induced pocket presents an opportunity for the rational design of PfHT1-specific inhibitors. Among our designed C3361 derivatives, several exhibited improved inhibition of PfHT1 and cellular potency against P. falciparum, with excellent selectivity to human GLUT1. These findings serve as a proof of concept for the development of the next-generation antimalarial chemotherapeutics by simultaneously targeting the orthosteric and allosteric sites of PfHT1.


Asunto(s)
Proteínas de Transporte de Monosacáridos/ultraestructura , Plasmodium falciparum/metabolismo , Plasmodium falciparum/ultraestructura , Proteínas Protozoarias/ultraestructura , Secuencia de Aminoácidos , Animales , Antimaláricos , Transporte Biológico , Glucosa/metabolismo , Humanos , Malaria , Malaria Falciparum/parasitología , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/metabolismo , Parásitos , Plasmodium falciparum/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Azúcares/metabolismo
7.
Cell ; 177(6): 1495-1506.e12, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150622

RESUMEN

The L-type voltage-gated Ca2+ (Cav) channels are modulated by various compounds exemplified by 1,4-dihydropyridines (DHP), benzothiazepines (BTZ), and phenylalkylamines (PAA), many of which have been used for characterizing channel properties and for treatment of hypertension and other disorders. Here, we report the cryoelectron microscopy (cryo-EM) structures of Cav1.1 in complex with archetypal antagonistic drugs, nifedipine, diltiazem, and verapamil, at resolutions of 2.9 Å, 3.0 Å, and 2.7 Å, respectively, and with a DHP agonist Bay K 8644 at 2.8 Å. Diltiazem and verapamil traverse the central cavity of the pore domain, directly blocking ion permeation. Although nifedipine and Bay K 8644 occupy the same fenestration site at the interface of repeats III and IV, the coordination details support previous functional observations that Bay K 8644 is less favored in the inactivated state. These structures elucidate the modes of action of different Cav ligands and establish a framework for structure-guided drug discovery.


Asunto(s)
Bloqueadores de los Canales de Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/ultraestructura , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico , Secuencia de Aminoácidos , Animales , Sitios de Unión , Canales de Calcio/metabolismo , Canales de Calcio/fisiología , Canales de Calcio/ultraestructura , Canales de Calcio Tipo L/fisiología , Microscopía por Crioelectrón , Diltiazem , Ligandos , Masculino , Modelos Moleculares , Nifedipino , Conejos , Verapamilo
8.
Cell ; 169(7): 1228-1239.e10, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28602350

RESUMEN

ABCA1, an ATP-binding cassette (ABC) subfamily A exporter, mediates the cellular efflux of phospholipids and cholesterol to the extracellular acceptor apolipoprotein A-I (apoA-I) for generation of nascent high-density lipoprotein (HDL). Mutations of human ABCA1 are associated with Tangier disease and familial HDL deficiency. Here, we report the cryo-EM structure of human ABCA1 with nominal resolutions of 4.1 Å for the overall structure and 3.9 Å for the massive extracellular domain. The nucleotide-binding domains (NBDs) display a nucleotide-free state, while the two transmembrane domains (TMDs) contact each other through a narrow interface in the intracellular leaflet of the membrane. In addition to TMDs and NBDs, two extracellular domains of ABCA1 enclose an elongated hydrophobic tunnel. Structural mapping of dozens of disease-related mutations allows potential interpretation of their diverse pathogenic mechanisms. Structural-based analysis suggests a plausible "lateral access" mechanism for ABCA1-mediated lipid export that may be distinct from the conventional alternating-access paradigm.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/química , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Dominios Proteicos , Alineación de Secuencia
9.
Cell ; 170(3): 470-482.e11, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28735751

RESUMEN

Voltage-gated sodium (Nav) channels initiate and propagate action potentials. Here, we present the cryo-EM structure of EeNav1.4, the Nav channel from electric eel, in complex with the ß1 subunit at 4.0 Å resolution. The immunoglobulin domain of ß1 docks onto the extracellular L5I and L6IV loops of EeNav1.4 via extensive polar interactions, and the single transmembrane helix interacts with the third voltage-sensing domain (VSDIII). The VSDs exhibit "up" conformations, while the intracellular gate of the pore domain is kept open by a digitonin-like molecule. Structural comparison with closed NavPaS shows that the outward transfer of gating charges is coupled to the iris-like pore domain dilation through intricate force transmissions involving multiple channel segments. The IFM fast inactivation motif on the III-IV linker is plugged into the corner enclosed by the outer S4-S5 and inner S6 segments in repeats III and IV, suggesting a potential allosteric blocking mechanism for fast inactivation.


Asunto(s)
Electrophorus/metabolismo , Proteínas de Peces/química , Canales de Sodio Activados por Voltaje/química , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón , Proteínas de Peces/metabolismo , Proteínas de Peces/ultraestructura , Modelos Moleculares , Dominios Proteicos , Alineación de Secuencia , Canales de Sodio Activados por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/ultraestructura
10.
Cell ; 165(6): 1467-1478, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27238017

RESUMEN

Niemann-Pick disease type C (NPC) is associated with mutations in NPC1 and NPC2, whose gene products are key players in the endosomal/lysosomal egress of low-density lipoprotein-derived cholesterol. NPC1 is also the intracellular receptor for Ebola virus (EBOV). Here, we present a 4.4 Å structure of full-length human NPC1 and a low-resolution reconstruction of NPC1 in complex with the cleaved glycoprotein (GPcl) of EBOV, both determined by single-particle electron cryomicroscopy. NPC1 contains 13 transmembrane segments (TMs) and three distinct lumenal domains A (also designated NTD), C, and I. TMs 2-13 exhibit a typical resistance-nodulation-cell division fold, among which TMs 3-7 constitute the sterol-sensing domain conserved in several proteins involved in cholesterol metabolism and signaling. A trimeric EBOV-GPcl binds to one NPC1 monomer through the domain C. Our structural and biochemical characterizations provide an important framework for mechanistic understanding of NPC1-mediated intracellular cholesterol trafficking and Ebola virus infection.


Asunto(s)
Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Ebolavirus/metabolismo , Fiebre Hemorrágica Ebola/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/química , Proteínas Portadoras/ultraestructura , Microscopía por Crioelectrón , Glicoproteínas/química , Glicoproteínas/metabolismo , Fiebre Hemorrágica Ebola/virología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/ultraestructura , Modelos Moleculares , Proteína Niemann-Pick C1 , Enfermedades de Niemann-Pick/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Proteínas de Transporte Vesicular , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/ultraestructura
11.
Nature ; 596(7870): 143-147, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34234349

RESUMEN

The neuronal-type (N-type) voltage-gated calcium (Cav) channels, which are designated Cav2.2, have an important role in the release of neurotransmitters1-3. Ziconotide is a Cav2.2-specific peptide pore blocker that has been clinically used for treating intractable pain4-6. Here we present cryo-electron microscopy structures of human Cav2.2 (comprising the core α1 and the ancillary α2δ-1 and ß3 subunits) in the presence or absence of ziconotide. Ziconotide is thoroughly coordinated by helices P1 and P2, which support the selectivity filter, and the extracellular loops (ECLs) in repeats II, III and IV of α1. To accommodate ziconotide, the ECL of repeat III and α2δ-1 have to tilt upward concertedly. Three of the voltage-sensing domains (VSDs) are in a depolarized state, whereas the VSD of repeat II exhibits a down conformation that is stabilized by Cav2-unique intracellular segments and a phosphatidylinositol 4,5-bisphosphate molecule. Our studies reveal the molecular basis for Cav2.2-specific pore blocking by ziconotide and establish the framework for investigating electromechanical coupling in Cav channels.


Asunto(s)
Analgésicos no Narcóticos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo N/química , Canales de Calcio Tipo N/metabolismo , Microscopía por Crioelectrón , omega-Conotoxinas/farmacología , Canales de Calcio Tipo N/ultraestructura , Humanos , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/farmacología , Conformación Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos
12.
Proc Natl Acad Sci U S A ; 121(9): e2322899121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38381792

RESUMEN

Voltage-gated sodium channels (Nav) undergo conformational shifts in response to membrane potential changes, a mechanism known as the electromechanical coupling. To delineate the structure-function relationship of human Nav channels, we have performed systematic structural analysis using human Nav1.7 as a prototype. Guided by the structural differences between wild-type (WT) Nav1.7 and an eleven mutation-containing variant, designated Nav1.7-M11, we generated three additional intermediate mutants and solved their structures at overall resolutions of 2.9-3.4 Å. The mutant with nine-point mutations in the pore domain (PD), named Nav1.7-M9, has a reduced cavity volume and a sealed gate, with all voltage-sensing domains (VSDs) remaining up. Structural comparison of WT and Nav1.7-M9 pinpoints two residues that may be critical to the tightening of the PD. However, the variant containing these two mutations, Nav1.7-M2, or even in combination with two additional mutations in the VSDs, named Nav1.7-M4, failed to tighten the PD. Our structural analysis reveals a tendency of PD contraction correlated with the right shift of the static inactivation I-V curves. We predict that the channel in the resting state should have a "tight" PD with down VSDs.


Asunto(s)
Canales de Sodio Activados por Voltaje , Humanos , Canales de Sodio Activados por Voltaje/genética , Potenciales de la Membrana , Mutación , Relación Estructura-Actividad
13.
Trends Biochem Sci ; 47(4): 289-300, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35012873

RESUMEN

The sterol-sensing domain (SSD) is present in several membrane proteins that function in cholesterol metabolism, transport, and signaling. Recent progress in structural studies of SSD-containing proteins, such as sterol regulatory element-binding protein (SREBP)-cleavage activating protein (Scap), Patched, Niemann-Pick disease type C1 (NPC1), and related proteins, reveals a conserved core that is essential for their sterol-dependent functions. This domain, by its name, 'senses' the presence of sterol substrates through interactions and may modulate protein behaviors with changing sterol levels. We summarize recent advances in structural and mechanistic investigations of these proteins and propose to divide them to two classes: M for 'moderator' proteins that regulate sterol metabolism in response to membrane sterol levels, and T for 'transporter' proteins that harbor inner tunnels for cargo trafficking across cellular membranes.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteína Niemann-Pick C1 , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Esteroles/metabolismo
14.
Nature ; 581(7808): 329-332, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32433610

RESUMEN

Diacylglycerol O-acyltransferase 1 (DGAT1) synthesizes triacylglycerides and is required for dietary fat absorption and fat storage in humans1. DGAT1 belongs to the membrane-bound O-acyltransferase (MBOAT) superfamily, members of which are found in all kingdoms of life and are involved in the acylation of lipids and proteins2,3. How human DGAT1 and other mammalian members of the MBOAT family recognize their substrates and catalyse their reactions is unknown. The absence of three-dimensional structures also hampers rational targeting of DGAT1 for therapeutic purposes. Here we present the cryo-electron microscopy structure of human DGAT1 in complex with an oleoyl-CoA substrate. Each DGAT1 protomer has nine transmembrane helices, eight of which form a conserved structural fold that we name the MBOAT fold. The MBOAT fold in DGAT1 forms a hollow chamber in the membrane that encloses highly conserved catalytic residues. The chamber has separate entrances for each of the two substrates, fatty acyl-CoA and diacylglycerol. DGAT1 can exist as either a homodimer or a homotetramer and the two forms have similar enzymatic activity. The N terminus of DGAT1 interacts with the neighbouring protomer and these interactions are required for enzymatic activity.


Asunto(s)
Microscopía por Crioelectrón , Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/metabolismo , Acilcoenzima A/química , Acilcoenzima A/metabolismo , Sitios de Unión , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/ultraestructura , Diglicéridos/metabolismo , Humanos , Modelos Moleculares , Multimerización de Proteína , Relación Estructura-Actividad , Triglicéridos/metabolismo
15.
Nature ; 581(7808): 333-338, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32433614

RESUMEN

As members of the membrane-bound O-acyltransferase (MBOAT) enzyme family, acyl-coenzyme A:cholesterol acyltransferases (ACATs) catalyse the transfer of an acyl group from acyl-coenzyme A to cholesterol to generate cholesteryl ester, the primary form in which cholesterol is stored in cells and transported in plasma1. ACATs have gained attention as potential drug targets for the treatment of diseases such as atherosclerosis, Alzheimer's disease and cancer2-7. Here we present the cryo-electron microscopy structure of human ACAT1 as a dimer of dimers. Each protomer consists of nine transmembrane segments, which enclose a cytosolic tunnel and a transmembrane tunnel that converge at the predicted catalytic site. Evidence from structure-guided mutational analyses suggests that acyl-coenzyme A enters the active site through the cytosolic tunnel, whereas cholesterol may enter from the side through the transmembrane tunnel. This structural and biochemical characterization helps to rationalize the preference of ACAT1 for unsaturated acyl chains, and provides insight into the catalytic mechanism of enzymes within the MBOAT family8.


Asunto(s)
Biocatálisis , Microscopía por Crioelectrón , Esterol O-Aciltransferasa/química , Esterol O-Aciltransferasa/metabolismo , Dominio Catalítico , Humanos , Modelos Moleculares , Multimerización de Proteína , Esterol O-Aciltransferasa/ultraestructura , Especificidad por Sustrato
16.
Proc Natl Acad Sci U S A ; 120(5): e2220578120, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36696443

RESUMEN

Voltage-gated sodium channel Nav1.6 plays a crucial role in neuronal firing in the central nervous system (CNS). Aberrant function of Nav1.6 may lead to epilepsy and other neurological disorders. Specific inhibitors of Nav1.6 thus have therapeutic potentials. Here we present the cryo-EM structure of human Nav1.6 in the presence of auxiliary subunits ß1 and fibroblast growth factor homologous factor 2B (FHF2B) at an overall resolution of 3.1 Å. The overall structure represents an inactivated state with closed pore domain (PD) and all "up" voltage-sensing domains. A conserved carbohydrate-aromatic interaction involving Trp302 and Asn326, together with the ß1 subunit, stabilizes the extracellular loop in repeat I. Apart from regular lipids that are resolved in the EM map, an unprecedented Y-shaped density that belongs to an unidentified molecule binds to the PD, revealing a potential site for developing Nav1.6-specific blockers. Structural mapping of disease-related Nav1.6 mutations provides insights into their pathogenic mechanism.


Asunto(s)
Canales de Sodio Activados por Voltaje , Humanos , Microscopía por Crioelectrón , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/química , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.5 , Canal de Sodio Activado por Voltaje NAV1.2
17.
Proc Natl Acad Sci U S A ; 120(41): e2309773120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37782796

RESUMEN

Voltage-gated sodium (Nav) channels govern membrane excitability, thus setting the foundation for various physiological and neuronal processes. Nav channels serve as the primary targets for several classes of widely used and investigational drugs, including local anesthetics, antiepileptic drugs, antiarrhythmics, and analgesics. In this study, we present cryogenic electron microscopy (cryo-EM) structures of human Nav1.7 bound to two clinical drugs, riluzole (RLZ) and lamotrigine (LTG), at resolutions of 2.9 Å and 2.7 Å, respectively. A 3D EM reconstruction of ligand-free Nav1.7 was also obtained at 2.1 Å resolution. RLZ resides in the central cavity of the pore domain and is coordinated by residues from repeats III and IV. Whereas one LTG molecule also binds to the central cavity, the other is found beneath the intracellular gate, known as site BIG. Therefore, LTG, similar to lacosamide and cannabidiol, blocks Nav channels via a dual-pocket mechanism. These structures, complemented with docking and mutational analyses, also explain the structure-activity relationships of the LTG-related linear 6,6 series that have been developed for improved efficacy and subtype specificity on different Nav channels. Our findings reveal the molecular basis for these drugs' mechanism of action and will aid the development of novel antiepileptic and pain-relieving drugs.


Asunto(s)
Cannabidiol , Canales de Sodio Activados por Voltaje , Humanos , Anticonvulsivantes/farmacología , Lamotrigina/farmacología , Sodio/metabolismo , Canales de Sodio Activados por Voltaje/química
18.
Trends Biochem Sci ; 46(6): 489-501, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33353849

RESUMEN

Historically, ryanodine receptors (RyRs) have presented unique challenges for high-resolution structural determination despite long-standing interest in their role in excitation-contraction coupling. Owing to their large size (nearly 2.2 MDa), high-resolution structures remained elusive until the advent of cryogenic electron microscopy (cryo-EM) techniques. In recent years, structures for both RyR1 and RyR2 have been solved at near-atomic resolution. Furthermore, recent reports have delved into their more complex structural associations with key modulators - proteins such as the dihydropyridine receptor (DHPR), FKBP12/12.6, and calmodulin (CaM), as well as ions and small molecules including Ca2+, ATP, caffeine, and PCB95. This review addresses the modulation of RyR1 and RyR2, in addition to the impact of such discoveries on intracellular Ca2+ dynamics and biophysical properties.


Asunto(s)
Calcio , Canal Liberador de Calcio Receptor de Rianodina , Calcio/metabolismo , Calmodulina/metabolismo , Microscopía por Crioelectrón , Microscopía Electrónica
19.
Cell ; 141(3): 446-57, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20434985

RESUMEN

The CED-4 homo-oligomer or apoptosome is required for initiation of programmed cell death in Caenorhabditis elegans by facilitating autocatalytic activation of the CED-3 caspase zymogen. How the CED-4 apoptosome assembles and activates CED-3 remains enigmatic. Here we report the crystal structure of the complete CED-4 apoptosome and show that it consists of eight CED-4 molecules, organized as a tetramer of an asymmetric dimer via a previously unreported interface among AAA(+) ATPases. These eight CED-4 molecules form a funnel-shaped structure. The mature CED-3 protease is monomeric in solution and forms an active holoenzyme with the CED-4 apoptosome, within which the protease activity of CED-3 is markedly stimulated. Unexpectedly, the octameric CED-4 apoptosome appears to bind only two, not eight, molecules of mature CED-3. The structure of the CED-4 apoptosome reveals shared principles for the NB-ARC family of AAA(+) ATPases and suggests a mechanism for the activation of CED-3.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteínas de Unión al Calcio/química , Secuencia de Aminoácidos , Animales , Apoptosomas/metabolismo , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Caenorhabditis elegans/química , Caspasas/química , Cristalografía por Rayos X , Modelos Moleculares , Alineación de Secuencia , Difracción de Rayos X
20.
Nature ; 576(7787): 492-497, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31766050

RESUMEN

Among the ten subtypes of mammalian voltage-gated calcium (Cav) channels, Cav3.1-Cav3.3 constitute the T-type, or the low-voltage-activated, subfamily, the abnormal activities of which are associated with epilepsy, psychiatric disorders and pain1-5. Here we report the cryo-electron microscopy structures of human Cav3.1 alone and in complex with a highly Cav3-selective blocker, Z9446,7, at resolutions of 3.3 Å and 3.1 Å, respectively. The arch-shaped Z944 molecule reclines in the central cavity of the pore domain, with the wide end inserting into the fenestration on the interface between repeats II and III, and the narrow end hanging above the intracellular gate like a plug. The structures provide the framework for comparative investigation of the distinct channel properties of different Cav subfamilies.


Asunto(s)
Apoproteínas/química , Apoproteínas/ultraestructura , Bloqueadores de los Canales de Calcio/química , Canales de Calcio Tipo T/química , Canales de Calcio Tipo T/ultraestructura , Microscopía por Crioelectrón , Piperidinas/química , Regulación Alostérica/efectos de los fármacos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Apoproteínas/genética , Sitios de Unión , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/genética , Humanos , Modelos Moleculares , Piperidinas/farmacología , Unión Proteica , Conformación Proteica , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA