Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Virol ; 97(8): e0058623, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37582206

RESUMEN

African swine fever (ASF) is a devastating disease caused by the African swine fever virus (ASFV) that adversely affects the pig industry. The spleen is the main target organ of ASFV; however, the function of metabolites in the spleen during ASFV infection is yet to be investigated. To define the metabolic changes in the spleen after ASFV infection, untargeted and targeted metabolomics analyses of spleens from ASFV-infected pigs were conducted. Untargeted metabolomics analysis revealed 540 metabolites with significant differential levels. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that these metabolites were mainly enriched in metabolic pathways, including nucleotide metabolism, purine metabolism, arginine biosynthesis, and neuroactive ligand-receptor interaction. Moreover, 134 of 540 metabolites quantified by targeted metabolomics analysis had differential levels and were enriched in metabolic pathways such as the biosynthesis of cofactors, ABC transporters, and biosynthesis of amino acids. Furthermore, coalition analysis of untargeted and targeted metabolomics data revealed that the levels of acylcarnitines, which are intermediates of fatty acid ß-oxidation, were significantly increased in ASFV-infected spleens compared with those in the uninfected spleens. Moreover, inhibiting fatty acid ß-oxidation significantly reduced ASFV replication, indicating that fatty acid ß-oxidation is essential for this process. To our knowledge, this is the first report presenting the metabolite profiles of ASFV-infected pigs. This study revealed a new mechanism of ASFV-mediated regulation of host metabolism. These findings provide new insights into the pathogenic mechanisms of ASFV, which will benefit the development of target drugs for ASFV replication. IMPORTANCE African swine fever virus, the only member of the Asfarviridae family, relies on hijacking host metabolism to meet the demand for self-replication. However, the change in host metabolism after African swine fever virus (ASFV) infection remains unknown. Here, we analyzed the metabolic changes in the pig spleen after ASFV infection for the first time. ASFV infection increased the levels of acylcarnitines. Inhibition of the production and metabolism of acylcarnitines inhibited ASFV replication. Acylcarnitines are the vital intermediates of fatty acid ß-oxidation. This study highlights the critical role of fatty acid ß-oxidation in ASFV infection, which may help identify target drugs to control African swine fever disease.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Carnitina , Bazo , Replicación Viral , Animales , Virus de la Fiebre Porcina Africana/fisiología , Ácidos Grasos/metabolismo , Metabolómica , Bazo/metabolismo , Porcinos , Carnitina/análisis
2.
Virol J ; 20(1): 54, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978180

RESUMEN

African swine fever (ASF) is a severe infectious disease caused by the African swine fever virus (ASFV), seriously endangering the global pig industry. ASFV possesses a large genome, strong mutation ability, and complex immune escape mechanisms. Since the first case of ASF was reported in China in August 2018, it has had a significant impact on social economy and food safety. In the present study, pregnant swine serum (PSS) was found to promote viral replication; differentially expressed proteins (DEPs) in PSS were screened and identified using the isobaric tags for relative and absolute quantitation technology and compared with those in non-pregnant swine serum (NPSS). The DEPs were analyzed using Gene Ontology functional annotation, Kyoto Protocol Encyclopedia of Genes and Genome pathway enrichment, and protein-protein interaction networks. In addition, the DEPs were validated via western blot and RT-qPCR experiments. And the 342 of DEPs were identified in bone marrow-derived macrophages cultured with PSS compared with the NPSS. The 256 were upregulated and 86 of DEPs were downregulated. The primary biological functions of these DEPs involved signaling pathways that regulate cellular immune responses, growth cycles, and metabolism-related pathways. An overexpression experiment showed that the PCNA could promote ASFV replication whereas MASP1 and BST2 could inhibit it. These results further indicated that some protein molecules in PSS were involved in the regulation of ASFV replication. In the present study, the role of PSS in ASFV replication was analyzed using proteomics, and the study will be provided a basis for future detailed research on the pathogenic mechanism and host interactions of ASFV as well as new insights for the development of small-molecule compounds to inhibit ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Proteómica , Replicación Viral , Mutación
3.
Molecules ; 28(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37894677

RESUMEN

DEAD-box decapping enzyme 20 (DDX20) is a putative RNA-decapping enzyme that can be identified by the conserved motif Asp-Glu-Ala-Asp (DEAD). Cellular processes involve numerous RNA secondary structure alterations, including translation initiation, nuclear and mitochondrial splicing, and assembly of ribosomes and spliceosomes. DDX20 reportedly plays an important role in cellular transcription and post-transcriptional modifications. On the one hand, DDX20 can interact with various transcription factors and repress the transcriptional process. On the other hand, DDX20 forms the survival motor neuron complex and participates in the assembly of snRNP, ultimately affecting the RNA splicing process. Finally, DDX20 can potentially rely on its RNA-unwinding enzyme function to participate in microRNA (miRNA) maturation and act as a component of the RNA-induced silencing complex. In addition, although DDX20 is not a key component in the innate immune system signaling pathway, it can affect the nuclear factor kappa B (NF-κB) and p53 signaling pathways. In particular, DDX20 plays different roles in tumorigenesis development through the NF-κB signaling pathway. This process is regulated by various factors such as miRNA. DDX20 can influence processes such as viral replication in cells by interacting with two proteins in Epstein-Barr virus and can regulate the replication process of several viruses through the innate immune system, indicating that DDX20 plays an important role in the innate immune system. Herein, we review the effects of DDX20 on the innate immune system and its role in transcriptional and post-transcriptional modification processes, based on which we provide an outlook on the future of DDX20 research in innate immunity and viral infections.


Asunto(s)
Infecciones por Virus de Epstein-Barr , MicroARNs , Humanos , FN-kappa B/metabolismo , Herpesvirus Humano 4 , Factores de Transcripción/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Inmunidad Innata , Proteína 20 DEAD-Box/metabolismo
4.
Vet Res ; 53(1): 24, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35313983

RESUMEN

Circular RNAs (circRNAs) are a new type of endogenous noncoding RNA that exhibit a variety of biological functions. However, it is not clear whether they are involved in foot-and-mouth disease virus (FMDV) infection and host response. In this study, we established circRNA expression profiles in FMDV-infected PK-15 cells using RNA-seq (RNA-sequencing) technology analysis. The biological function of the differentially expressed circRNAs was determined by protein interaction network, Gene Ontology (GO), and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment. We found 1100 differentially expressed circRNAs (675 downregulated and 425 upregulated) which were involved in various biological processes such as protein ubiquitination modification, cell cycle regulation, RNA transport, and autophagy. We also found that circRNAs identified after FMDV infection may be involved in the host cell immune response. RNA-Seq results were validated by circRNAs qRT-PCR. In this study, we analyzed for the first time circRNAs expression profile and the biological function of these genes after FMDV infection of host cells. The results provide new insights into the interactions between FMDV and host cells.


Asunto(s)
Virus de la Fiebre Aftosa , MicroARNs , Animales , Virus de la Fiebre Aftosa/genética , Perfilación de la Expresión Génica/veterinaria , Ontología de Genes , MicroARNs/genética , ARN Circular/genética
5.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142136

RESUMEN

Z-conformation nucleic acid binding protein 1 (ZBP1), a powerful innate immune sensor, has been identified as the important signaling initiation factor in innate immune response and the multiple inflammatory cell death known as PANoptosis. The initiation of ZBP1 signaling requires recognition of left-handed double-helix Z-nucleic acid (includes Z-DNA and Z-RNA) and subsequent signaling transduction depends on the interaction between ZBP1 and its adapter proteins, such as TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1), and RIPK3. ZBP1 activated innate immunity, including type-I interferon (IFN-I) response and NF-κB signaling, constitutes an important line of defense against pathogenic infection. In addition, ZBP1-mediated PANoptosis is a double-edged sword in anti-infection, auto-inflammatory diseases, and tumor immunity. ZBP1-mediated PANoptosis is beneficial for eliminating infected cells and tumor cells, but abnormal or excessive PANoptosis can lead to a strong inflammatory response that is harmful to the host. Thus, pathogens and host have each developed multiplex tactics targeting ZBP1 signaling to maintain strong virulence or immune homeostasis. In this paper, we reviewed the mechanisms of ZBP1 signaling, the effects of ZBP1 signaling on host immunity and pathogen infection, and various antagonistic strategies of host and pathogen against ZBP1. We also discuss existent gaps regarding ZBP1 signaling and forecast potential directions for future research.


Asunto(s)
ADN de Forma Z , Interferón Tipo I , Ácidos Nucleicos , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , FN-kappa B/metabolismo , ARN , Proteínas de Unión al ARN/metabolismo , Serina/genética , Treonina/genética
6.
iScience ; 27(4): 109345, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500823

RESUMEN

African swine fever virus (ASFV) infection usually causes viremia within a few days. However, the metabolic changes in pig serum after ASFV infection remain unclear. In this study, serum samples collected from ASFV-infected pigs at different times were analyzed using pseudotargeted metabolomics method. Metabolomic analysis revealed the dopaminergic synapse pathway has the highest rich factor in both ASFV5 and ASFV10 groups. By disrupting the dopamine synaptic pathway, dopamine receptor antagonists inhibited ASFV replication and L-dopa promoted ASFV replication. In addition, guanosine, one of the top20 changed metabolites in both ASFV5 and ASFV10 groups suppressed the replication of ASFV. Taken together, this study revealed the changed serum metabolite profiles of ASFV-infected pigs at various times after infection and verified the effect of the changed metabolites and metabolic pathways on ASFV replication. These findings may contribute to understanding the pathogenic mechanisms of ASFV and the development of target drugs to control ASF.

7.
Food Chem ; 429: 136872, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37473630

RESUMEN

Neonicotinoid insecticides (NEOs) are widely used because of their high efficiency, low dosage and long duration. However, the residues of NEOs could cause the collapse of bee population and even threaten human health. Herein, an urchin-shaped covalent organic framework with rich nitrogen (U-COF) was synthesized with 2,4,6-tri(4-aminophenyl)-1,3,5-triazine (TZT) and 2,5-divinyl-1,4-benzaldehyde (DVA) by adjusting the catalyst (acetic acid) concentration for adsorptive removal of NEOs. This U-COF with hierarchical structure showed good adsorption capacities for imidacloprid, acetamiprid and thiamethoxam at 217.2, 177.2 and 147.5 mg/g, respectively. The nitrogen-rich structure and abundant π electron system of U-COF also improved the adsorption capacity for NEOs. π-π interaction, hydrophobic interaction, and hydrogen bonding between adsorbent and target are the main reasons for the good adsorption effect. After five adsorption-desorption cycles, U-COF still shows good adsorption capacity. What is more important is that the high adsorption capacity of NEOs from honey and fruits was achieved by using U-COF, illustrating the great potential as sorbents for real samples.


Asunto(s)
Miel , Insecticidas , Estructuras Metalorgánicas , Humanos , Animales , Abejas , Insecticidas/análisis , Estructuras Metalorgánicas/química , Frutas/química , Neonicotinoides/análisis
8.
Polymers (Basel) ; 15(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37688152

RESUMEN

With the rapid development of industry and the acceleration of urbanization, oil pollution has caused serious damage to water, and its treatment has always been a research hotspot. Compared with traditional adsorption materials, aerogel has the advantages of light weight, large adsorption capacity and high selective adsorption, features that render it ideal as a high-performance sorbent for water treatment. The objective of this research was to develop novel hydrophobic polymer-reinforced silica aerogel microspheres (RSAMs) with water glass as the precursor, aminopropyltriethoxysilane as the modifier, and styrene as the crosslinker for oil removal from water. The effects of drying method and polymerization time on the structure and oil adsorption capacity were investigated. The drying method influenced the microstructure and pore structure in a noteworthy manner, and it also significantly depended on the polymerization time. More crosslinking time led to more volume shrinkage, thus resulting in a larger apparent density, lower pore volume, narrower pore size distribution and more compact network. Notably, the hydrophobicity increased with the increase in crosslinking time. After polymerization for 24 h, the RSAMs possessed the highest water contact angle of 126°. Owing to their excellent hydrophobicity, the RSAMs via supercritical CO2 drying exhibited significant oil and organic liquid adsorption capabilities ranging from 6.3 to 18.6 g/g, higher than their state-of-the-art counterparts. Moreover, their robust mechanical properties ensured excellent reusability and recyclability, allowing for multiple adsorption-desorption cycles without significant degradation in performance. The novel sorbent preparation method is facile and inspiring, and the resulting RSAMs are exceptional in capacity, efficiency, stability and regenerability.

9.
Dalton Trans ; 52(12): 3567-3574, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36880529

RESUMEN

Hexagonal boron nitride (h-BN) is an excellent support material for nanocatalysts due to its two-dimensional (2D) architectural morphology and physicochemical stability. In this study, a chemically stable, recoverable, eco-friendly, and magnetic h-BN/Pd/Fe2O3 catalyst was prepared by a one-step calcination process, in which Pd and Fe2O3 nanoparticles (NPs) were uniformly decorated on the surface of h-BN via a typical adsorption-reduction procedure. In detail, nanosized magnetic (Pd/Fe2O3) NPs were derived from a Prussian blue analogue prototype, a well-known porous metal-organic framework, and then further surface-engineered to produce magnetic BN nanoplate-supported Pd nanocatalysts. The structural and morphological features of h-BN/Pd/Fe2O3 were investigated by spectroscopic and microscopic characterization techniques. Moreover, the h-BN nanosheets endow it with stability and appropriate chemical anchoring sites which solve the problems of inefficient reaction rate and high consumption caused by the inevitable agglomeration of precious metal NPs. Under mild reaction conditions, the developed nanostructured h-BN/Pd/Fe2O3 as the catalyst shows high yield and efficient reusability in reducing nitroarenes into the corresponding anilines using sodium borohydride (NaBH4) as a reductant.

10.
Virus Res ; 327: 199052, 2023 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-36775023

RESUMEN

African swine fever (ASF) is a severe infectious disease that has a high global prevalence. The fatality rate of pigs infected with ASF virus (ASFV) is close to 100%; in the absence of a safe and reliable commercial vaccine, this poses a threat to the global pig industry and public health. To better understand the interaction of ASFV with its host, isobaric tags for relative and absolute quantitation combined with liquid chromatography-mass spectrometry was used to conduct quantitative proteomic analysis of bone marrow-derived macrophage cells infected with ASFV. Overall, 4579 proteins were identified; 286 of these were significantly upregulated and 69 were significantly downregulated after ASFV infection. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction network analyses were used to obtain insights into the dynamics and complexity of the ASFV-host interaction. In addition, immunoblotting revealed that the expression of PIK3AP1, RNF114, and FABP5 was upregulated and that of TRAM1 was downregulated after ASFV infection. Overexpression of PIK3AP1 and RNF114 significantly inhibited ASFV replication in vitro, but the suppressive effect of PIK3AP1 on ASFV replication was independent of the PI3K-Akt pathway. Further studies confirmed that ASFV MGF360-9L interacts with PIK3AP1 to reduce its protein expression level. Moreover, LY294002, an inhibitor of the PI3K-Akt pathway, inhibited ASFV replication, indicating the importance of the PI3K-Akt pathway in ASFV infection. This study identified the network of interactions between ASFV and host cells and provides a reference for the development of anti-ASFV strategies and for studying the potential mechanisms and pathogenesis of ASFV infection.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteómica , Replicación Viral
11.
Virus Res ; 336: 199198, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37640268

RESUMEN

African swine fever virus (ASFV) infection causes African swine fever (ASF), a virulent infectious disease that threatens the safety of livestock worldwide. Studies have shown that MGF360-9 L is important for the virulence of ASFV and the host protein HS1-associated protein X-1 (HAX1) plays an important role in viral pathogenesis. This study aimed to clarify the mechanism by which HAX1 mediates ASFV replication through interactions with MGF360-9 L. The regions of interaction between MGF360-9 L and HAX1 were predicted and validated. HAX1 overexpression and RNA interference studies revealed that HAX1 is a host restriction factor that suppresses ASFV replication. Moreover, HAX1 expression was inhibited in ASFV-infected mature bone marrow-derived macrophages, and infection with the virulent MGF360-9 L gene deletion strain (∆MGF360-9 L) attenuated the inhibitory effect of the wild-type strain (WT) on HAX1 expression, suggesting a complex regulatory relationship between MGF360-9 L and HAX1. Furthermore, the E3 ubiquitin ligase RNF114 interacted with MGF360-9 L and HAX1, MGF360-9 L degraded HAX1 through the ubiquitin-proteasome pathway, and RNF114 facilitated the degradation of HAX1 by MGF360-9L-linked K48 ubiquitin chains through the ubiquitin-proteasome pathway, thereby facilitating ASFV replication. In conclusion, this study has enriched our understanding of the regulatory networks between ASFV proteins and host proteins and provided a reference for investigation into the pathogenesis and immune escape mechanism of ASFV.

12.
Food Chem ; 389: 133056, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35490518

RESUMEN

Metal-organic frameworks (MOFs) have great potential to remove pesticide residues. However, the lack of affinity between the materials and target and the process of trivial sample preparation resulted in limited removal efficiency. Here, we report a one-pot method for the fast preparation of NH2-MIL-125 (Ti)-based filter paper to synthesise NH2-MIL-125 (Ti)-based filter paper membranes. The NH2-MIL-125 (Ti)-based filter paper membrane takes advantage of π-π interactions between the organophosphorus pesticides (OPPs) and the benzene ring of MOFs. The affinity of amino groups and metal Ti for phosphorus atoms in the OPPs exhibits rapid removal efficiency for three OPPs, imidan, fenthion, and fenitrothion. The isothermal adsorption results for imidan, fenthion, and fenitrothion were consistent with the Langmuir, Freundlich, and Langmuir models, respectively. The kinetic results for imidan, fenthion, and fenitrothion agreed with the pseudo-second-order kinetic model, and the removal efficiency reached equilibrium within 1 min. There was no significant change in the adsorption capacity of OPPs in different pH solutions (pH = 2-10). Compared with that of MOFs, the NH2-MIL-125 (Ti)-based filter paper membrane removal efficiency of OPPs is the same, and it also has better removal efficiency in actual spinach samples. As a result, the sample pretreatment procedure was simplified using a low-cost and simple-to-synthesize disposable NH2-MIL-125 (Ti)-based filter paper membrane, samples' quick separation and the simultaneous fast removal of OPPs.


Asunto(s)
Estructuras Metalorgánicas , Plaguicidas , Fosmet , Fenitrotión , Fentión , Estructuras Metalorgánicas/química , Compuestos Organofosforados/análisis , Plaguicidas/análisis , Titanio , Verduras , Agua
13.
Anal Chim Acta ; 1227: 340269, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36089308

RESUMEN

A composite matrix of sodium alginate (SA) and COF (Tp-DHBD) was designed and prepared for the detection of quaternary ammonium salts (QAs) containing heteroatoms. SA@Tp-DHBD self-assembled by the hydrogen bonding interaction between SA and COF has abundant hydroxyl and carboxylate anion sites, which makes for the excellent enrichment of the QAs through multiple interactions. Besides, the abundant hydroxyl groups can enhance laser absorption and energy transfer to achieve sensitive detection. The introduction of hydrophilic SA greatly promotes the dispersion of COFs to obtain good detection repeatability. Under the optimized experimental conditions, SA@Tp-DHBD was added to the solution of analytes and vortexed evenly, then directly analyzed by MALDI-TOF-MS. The detection limit of choline chloride, chlormequat chloride, and mepiquat chloride is 0.001 mg L-1; the detection limit of acetylcholine is 0.005 mg L-1. The relative standard deviations of target-target and sample-sample are below 6.0% and 7.0%, respectively. Moreover, the satisfactory recoveries in complex lake water and fruits meet the needs of practical applications. Comparative experiments were performed with the reported representative matrices, including ZIF-8 (MOF), TpBD (COF), UiO@TapbTp (MOF@COF), and α-cyano-4-hydroxycinnamic acid (organic matrix, CHCA). SA@Tp-DHBD exhibits the best matrix performance for QAs.


Asunto(s)
Estructuras Metalorgánicas , Frutas , Compuestos de Amonio Cuaternario , Sales (Química) , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Agua
14.
Front Microbiol ; 13: 1037346, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406406

RESUMEN

African swine fever (ASF) is a contagious and lethal hemorrhagic disease in pigs; its spread results in huge economic losses to the global pig industry. ASF virus (ASFV) is a large double-stranded DNA virus encoding >150 open reading frames. Among them, ASFV-encoded D1133L was predicted to be a helicase but its specific function remains unknown. Since virus-host protein interactions are key to understanding viral protein function, we used co-immunoprecipitation combined with liquid chromatography-mass spectrometry to investigate D1133L. This study describes the interaction network of ASFV D1133L protein in porcine kidney PK-15 cells. Overall, 1,471 host proteins that potentially interact with D1133L are identified. Based on these host proteins, a protein-protein network was constructed. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that cellular D1133L-interacted proteins are involved in the ribosome, spliceosome, RNA transport, oxidative phosphorylation, proteasome, and DNA replication. Vimentin (VIM), tripartite motif-containing protein 21 (TRIM21), and Tu translation elongation factor (TUFM) were confirmed to interact with D1133L in vitro. VIM or TRIM21 overexpression significantly promoted ASFV replication, but TUFM overexpression significantly inhibited ASFV replication. These results help elucidate the specific functions of D1133L and the potential mechanisms underlying ASFV replication.

15.
ACS Appl Mater Interfaces ; 13(17): 20467-20478, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33880925

RESUMEN

An acidified SnO2/rGO aerogel (ASGA) is an attractive contributor in ethanol gas sensing under ultralow concentration because of the sufficient active sites and adsorption pores in SnO2 and the rGA, respectively. Furthermore, a p-n heterojunction is successfully constructed by the high electron mobility between ASP and rGA to establish a brand-new bandgap of 2.72 eV, where more electrons are released and the surface energy is decreased, to improve the gas sensitivity. The ASGA owns a specific surface area of 256.1 m2/g, far higher than SnO2 powder (68.7 m2/g), indicating an excellent adsorption performance, so it can acquire more ethanol gas for a redox reaction. For gas-sensing ability, the ASGA exhibits an excellent response of Ra/Rg = 137.4 to 20 ppm of ethanol at the optimum temperature of 210 °C and can reach a response of 1.2 even at the limit detection concentration of 0.25 ppm. After the concentration gradient change test, a nonlinear increase between concentration and sensitivity (S-C curve) is observed, and it indirectly proves the chemical adsorption between ethanol and ASGA, which exhibits charge transfer and improves electron mobility. In addition, a detailed energy band diagram and sensor response diagram jointly depict the gas-sensitive mechanism. Finally, a conversed calculation explains the feasibility of the nonlinear S-C curve from the atomic level, which further verifies the chemical adsorption during the sensing process.

16.
ACS Appl Mater Interfaces ; 13(18): 21286-21298, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33904728

RESUMEN

A superflexible hydrophobic silica-based aerogel (FHSA) was prepared via a facile sol-gel process and ambient pressure drying method. The FHSA was treated at different temperatures varying from -196 to 450 °C to evaluate its thermal and mechanical performances. The evolutions of the physical property, hydrophobicity, microstructure, pore structure, and chemical structure of the FHSA with the various treatment temperatures were investigated comprehensively. The structure of the FHSA did not show an obvious change after treatment in the liquid nitrogen. The bulk density of the FHSA increased from 0.047 to 0.077 g cm-3 when the thermal treatment temperature increased from 25 to 450 °C. The specific surface area and pore volume of the FHSA increased with the treatment temperature owing to the decomposition of the organic moieties. The Fourier transform infrared spectra showed that the methyl groups in the FHSA had excellent thermostability up to 400 °C. The water contact angles of the FHSA after treatment at -196, 25, 200, 300, 350, 400, and 450 °C were 131, 151, 162, 150, 132, 119, and 34°, respectively. The thermal conductivity of the FHSA at a low temperature of -10 °C was 0.022 W m-1 K-1. The reversible deformation rate of the FHSA was more than 80% within 100 compression cycles. After treatment in liquid nitrogen, the reversible deformation rate of the FHSA remained at 50%. The synthesis method of the FHSA is simple, the resulting FHSA showed good performance both in thermostability and flexibility, and it is promisingly applied for thermal insulation and sealing in ultralow-temperature environments.

17.
PLoS One ; 7(4): e34817, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22514670

RESUMEN

BACKGROUND: Tomato yellow leaf curl virus (TYLCV) was introduced into China in 2006, approximately 10 years after the introduction of an invasive whitefly, Bemisia tabaci (Genn.) B biotype. Even so the distribution and prevalence of TYLCV remained limited, and the economic damage was minimal. Following the introduction of Q biotype into China in 2003, the prevalence and spread of TYLCV started to accelerate. This has lead to the hypothesis that the two biotypes might not be equally competent vectors of TYLCV. METHODOLOGY/PRINCIPAL FINDINGS: The infection frequency of TYLCV in the field-collected B. tabaci populations was investigated, the acquisition and transmission capability of TYLCV by B and Q biotypes were compared under the laboratory conditions. Analysis of B. tabaci populations from 55 field sites revealed the existence of 12 B and 43 Q biotypes across 18 provinces in China. The acquisition and transmission experiments showed that both B and Q biotypes can acquire and transmit the virus, however, Q biotype demonstrated superior acquisition and transmission capability than its B counterparts. Specifically, Q biotype acquired significantly more viral DNA than the B biotype, and reached the maximum viral load in a substantially shorter period of time. Although TYLCV was shown to be transmitted horizontally by both biotypes, Q biotype exhibited significantly higher viral transmission frequency than B biotype. Vertical transmission result, on the other hand, indicated that TYLCV DNA can be detected in eggs and nymphs, but not in pupae and adults of the first generation progeny. CONCLUSIONS/SIGNIFICANCE: These combined results suggested that the epidemiology of TYLCV was aided differentially by the two invasive whiteflies (B and Q biotypes) through horizontal but not vertical transmission of the virus. This is consistent with the concomitant eruption of TYLCV in tomato fields following the recent rapid invasion of Q biotype whitefly in China.


Asunto(s)
Hemípteros/virología , Enfermedades de las Plantas/virología , Virus de Plantas/patogenicidad , Solanum lycopersicum/virología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA