Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gut ; 73(2): 268-281, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37734910

RESUMEN

BACKGROUND AND AIMS: Deregulation of RNA N6-methyladenosine (m6A) modification in intestinal epithelial cells (IECs) influences intestinal immune cells and leads to intestinal inflammation. We studied the function of fat mass-and obesity-associated protein (FTO), one of the m6A demethylases, in patients with ulcerative colitis (UC). METHODS: We analysed colon tissues of Ftoflox/flox; Villin-cre mice and their Ftoflox/flox littermates with dextran sulfate sodium (DSS) using real-time PCR and 16s rRNA sequencing. RNA and methylated RNA immunoprecipitation sequencing were used to analyse immunocytes and IECs. Macrophages were treated with conditioned medium of FTO-knockdown MODE-K cells or sphingosine-1-phosphate (S1P) and analysed for gene expression. Liquid chromatograph mass spectrometry identified C16-ceramide. RESULTS: FTO downregulation was identified in our in-house cohort and external cohorts of UC patients. Dysbiosis of gut microbiota, increased infiltration of proinflammatory macrophages, and enhanced differentiation of Th17 cells were observed in Ftoflox/flox;Villin-cre mice under DSS treatment. FTO deficiency resulted in an increase in m6A modification and a decrease in mRNA stability of CerS6, the gene encoding ceramide synthetase, leading to the downregulation of CerS6 and the accumulation of S1P in IECs. Subsequentially, the secretion of S1P by IECs triggered proinflammatory macrophages to secrete serum amyloid A protein 1/3, ultimately inducing Th17 cell differentiation. In addition, through bioinformatic analysis and experimental validation, we identified UC patients with lower FTO expression might respond better to vedolizumab treatment. CONCLUSIONS: FTO downregulation promoted UC by decreasing CerS6 expression, leading to increased S1P accumulation in IECs and aggravating colitis via m6A-dependent mechanisms. Lower FTO expression in UC patients may enhance their response to vedolizumab treatment.


Asunto(s)
Colitis Ulcerosa , Colitis , Humanos , Animales , Ratones , Colitis Ulcerosa/metabolismo , ARN Ribosómico 16S/metabolismo , Mucosa Intestinal/metabolismo , Colitis/inducido químicamente , Colitis/genética , Colon/metabolismo , Esfingolípidos/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
2.
New Phytol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056291

RESUMEN

Protein posttranslational modifications play crucial roles in plant immunity through modulating a complicated signaling network mediated by different hormones. We previously demonstrated that OsATL32, an ATL-type E3 ligase, negatively contributes to rice immunity against Magnaporthe oryzae. Here, we show that OsATL32 forms a loop with OsPPKL2 and OsGSK2 through distinct protein posttranslational modifications to modulate rice immunity. OsATL32 ubiquitinates OsPPKL2, a protein phosphatase with Kelch-like repeat domains that exerts positive roles in regulating rice immunity against M. oryzae and chitin-triggered immune responses, for degradation. The glycogen synthase kinase 2 (OsGSK2), which acts as a negative regulator of rice immunity against M. oryzae and chitin-triggered immune responses, phosphorylates OsATL32 to elevate its protein stability and E3 ligase activity on OsPPKL2. Moreover, OsPPKL2 directly dephosphorylates OsGSK2, affecting its kinase activity on substrates including OsATL32 for phosphorylation. Like OsGSK2 as a BR signaling repressor, OsATL32 negatively regulates BR signaling; conversely, OsPPKL2 plays a positive role in BR signaling. These findings provide a molecular mechanism in which OsATL32 serves as a node connecting BR signaling and immunity by associating with OsPPKL2 and OsGSK2, assembling into a distinct protein posttranslational modifications-linked loop that functions in rice BR signaling and immunity.

3.
Neurol Sci ; 45(2): 679-691, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37624541

RESUMEN

BACKGROUND: Despite endovascular coiling as a valid modality in treatment of aneurysmal subarachnoid hemorrhage (aSAH), there is a risk of poor prognosis. However, the clinical utility of previously proposed early prediction tools remains limited. We aimed to develop a clinically generalizable machine learning (ML) models for accurately predicting unfavorable outcomes in aSAH patients after endovascular coiling. METHODS: Functional outcomes at 6 months after endovascular coiling were assessed via the modified Rankin Scale (mRS) and unfavorable outcomes were defined as mRS 3-6. Five ML algorithms (logistic regression, random forest, support vector machine, deep neural network, and extreme gradient boosting) were used for model development. The area under precision-recall curve (AUPRC) and receiver operating characteristic curve (AUROC) was used as main indices of model evaluation. SHapley Additive exPlanations (SHAP) method was applied to interpret the best-performing ML model. RESULTS: A total of 371 patients were eventually included into this study, and 85.4% of them had favorable outcomes. Among the five models, the DNN model had a better performance with AUPRC of 0.645 (AUROC of 0.905). Postoperative GCS score, size of aneurysm, and age were the top three powerful predictors. The further analysis of five random cases presented the good interpretability of the DNN model. CONCLUSION: Interpretable clinical prediction models based on different ML algorithms have been successfully constructed and validated, which would serve as reliable tools in optimizing the treatment decision-making of aSAH. Our DNN model had better performance to predict the unfavorable outcomes at 6 months in aSAH patients compared with Yan's nomogram model.


Asunto(s)
Procedimientos Endovasculares , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/diagnóstico por imagen , Hemorragia Subaracnoidea/etiología , Hemorragia Subaracnoidea/terapia , Curva ROC , Factores de Riesgo
4.
Bull Entomol Res ; 114(2): 230-236, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38475984

RESUMEN

As an environmental factor, temperature impacts the distribution of species and influences interspecific competition. The molecular chaperones encoded by small heat shock proteins (sHsps) are essential for rapid, appropriate responses to environmental stress. This study focuses on Hsp20.8, which encodes a temperature-responsive sHsp in Liriomyza trifolii, an insect pest that infests both agricultural and ornamental crops. Hsp20.8 expression was highest at 39℃ in L. trifolii pupae and adults, and expression levels were greater in pupae than in adults. Recombinant Hsp20.8 was expressed in Escherichia coli and conferred a higher survival rate than the empty vector to bacterial cells exposed to heat stress. RNA interference experiments were conducted using L. trifolii adults and prepupae and the knockdown of Hsp20.8 expression increased mortality in L. trifolii during heat stress. The results expand our understanding of sHsp function in Liriomyza spp. and the ongoing adaptation of this pest to climate change. In addition, this study is also important for predicting the distribution of invasive species and proposing new prevention and control strategies based on temperature adaptation.


Asunto(s)
Dípteros , Proteínas de Insectos , Animales , Dípteros/genética , Dípteros/fisiología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Calor , Termotolerancia , Pupa/crecimiento & desarrollo , Pupa/genética , Pupa/metabolismo , Proteínas de Choque Térmico Pequeñas/metabolismo , Proteínas de Choque Térmico Pequeñas/genética , Interferencia de ARN
5.
Molecules ; 29(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38257378

RESUMEN

The high electrons and holes recombination rate of ZnIn2S4 significantly limits its photocatalytic performance. Herein, a simple in situ photodeposition strategy is adopted to introduce the cocatalyst cobalt phosphate (Co-Pi) on ZnIn2S4, aiming at facilitating the separation of electron-hole by promoting the transfer of photogenerated holes of ZnIn2S4. The study reveals that the composite catalyst has superior photocatalytic performance than blank ZnIn2S4. In particular, ZnIn2S4 loaded with 5% Co-Pi (ZnIn2S4/5%Co-Pi) has the best photocatalytic activity, and the H2 production rate reaches 3593 µmol·g-1·h-1, approximately double that of ZnIn2S4 alone. Subsequent characterization data demonstrate that the introduction of the cocatalyst Co-Pi facilitates the transfer of ZnIn2S4 holes, thus improving the efficiency of photogenerated carrier separation. This investigation focuses on the rational utilization of high-content and rich cocatalysts on earth to design low-cost and efficient composite catalysts to achieve sustainable photocatalytic hydrogen evolution.

6.
Molecules ; 29(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542825

RESUMEN

Roasting is an important step in the pretreatment of biomass upgrading. Roasting can improve the fuel quality of biomass, reduce the O/C and H/C ratios in the biomass, and provide the biomass with a fuel quality comparable to that of lignite. Therefore, studying the structure and component evolution laws during biomass roasting treatment is important for the rational and efficient utilization of biomass. When the roasting temperature is 200-300 °C, the cellulose and hemicellulose in the biomass undergo a depolymerization reaction, releasing many monocyclic aromatic hydrocarbons with high reactivity. The proportion of monocyclic aromatic hydrocarbons in biomass roasting products can be effectively regulated by controlling the reaction temperature, residence time, catalyst, baking atmosphere, and other factors in the biomass roasting process. This paper focuses on the dissociation law of organic components in the pretreatment process of biomass roasting.


Asunto(s)
Calor , Hidrocarburos Aromáticos , Biomasa , Hidrocarburos Aromáticos/química , Temperatura , Celulosa , Hidrocarburos
7.
J Integr Plant Biol ; 66(7): 1459-1480, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38629772

RESUMEN

Ubiquitination-mediated protein degradation is integral to plant immunity, with E3 ubiquitin ligases acting as key factors in this process. Here, we report the functions of OsATL32, a plasma membrane-localized Arabidopsis Tóxicos En Levadura (ATL)-type E3 ubiquitin ligase, in rice (Oryza sativa) immunity and its associated regulatory network. We found that the expression of OsATL32 is downregulated in both compatible and incompatible interactions between rice and the rice blast fungus Magnaporthe oryzae. The OsATL32 protein level declines in response to infection by a compatible M. oryzae strain or to chitin treatment. OsATL32 negatively regulates rice resistance to blast and bacterial leaf blight diseases, as well as chitin-triggered immunity. Biochemical and genetic studies revealed that OsATL32 suppresses pathogen-induced reactive oxygen species (ROS) accumulation by mediating ubiquitination and degradation of the ROS-producing OsRac5-OsRbohB module, which enhances rice immunity against M. oryzae. The protein phosphatase PHOSPHATASE AND TENSIN HOMOLOG enhances rice blast resistance by dephosphorylating OsATL32 and promoting its degradation, preventing its negative effect on rice immunity. This study provides insights into the molecular mechanism by which the E3 ligase OsATL32 targets a ROS-producing module to undermine rice immunity.


Asunto(s)
Oryza , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Especies Reactivas de Oxígeno , Ubiquitinación , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Oryza/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Inmunidad de la Planta/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad/genética , Ascomicetos
8.
J Integr Plant Biol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953747

RESUMEN

NAC transcription factors (TFs) are pivotal in plant immunity against diverse pathogens. Here, we report the functional and regulatory network of MNAC3, a novel NAC TF, in rice immunity. MNAC3, a transcriptional activator, negatively modulates rice immunity against blast and bacterial leaf blight diseases and pathogen-associated molecular pattern (PAMP)-triggered immune responses. MNAC3 binds to a CACG cis-element and activates the transcription of immune-negative target genes OsINO80, OsJAZ10, and OsJAZ11. The negative function of MNAC3 in rice immunity depends on its transcription of downstream genes such as OsINO80 and OsJAZ10. MNAC3 interacts with immunity-related OsPP2C41 (a protein phosphatase), ONAC066 (a NAC TF), and OsDjA6 (a DnaJ chaperone). ONAC066 and OsPP2C41 attenuate MNAC3 transcriptional activity, while OsDjA6 promotes it. Phosphorylation of MNAC3 at S163 is critical for its negative functions in rice immunity. OsPP2C41, which plays positive roles in rice blast resistance and chitin-triggered immune responses, dephosphorylates MNAC3, suppressing its transcriptional activity on the target genes OsINO80, OsJAZ10, and OsJAZ11 and promoting the translocation of MNAC3 from nucleus to cytoplasm. These results establish a MNAC3-centered regulatory network in which OsPP2C41 dephosphorylates MNAC3, attenuating its transcriptional activity on downstream immune-negative target genes in rice. Together, these findings deepen our understanding of molecular mechanisms in rice immunity and offer a novel strategy for genetic improvement of rice disease resistance.

9.
Mol Genet Genomics ; 298(6): 1321-1330, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37498358

RESUMEN

The Datong Basin was an important arena for population movement and admixture between the Yellow River Valley and Eastern Steppe. In historical materials, the region was often the setting for a tug-of-war between Han farmers and non-Han nomads. The genetic makeup and population history of this Datong population has, however, remained uncertain. In this study, we analysed 289 mitogenomes from Datong individuals. Our primary findings were: (1) population summary statistics analysis revealed a high level of genetic diversity and strong signals of population expansion in the Datong population; (2) inter-population comparisons (PCA and Fst heatmap) exhibited a close clustering between the Datong population and Northern Han, especially northern frontier groups, such as the Inner Mongolia Han, Heilongjiang Han, Liaoning Han and Tianjin Han; (3) phylogeographic analysis of complete mitogenomes revealed the presence of different components in the maternal gene pools of Datong population-the northern East Asian component was dominant (66.44%), whereas the southern East Asians were the second largest component with 31.49%. We also observed a much reduced west Eurasian (2.07%) component; (4) direct comparisons with ancient groups showed closer relationship between Datong and Yellow River farmers than Eastern Steppe nomads. Despite, therefore, centuries of Eastern Steppe nomadic control over the Datong area, Yellow River farmers had a much more significant impact on the Datong population.


Asunto(s)
Genoma Mitocondrial , Humanos , Genoma Mitocondrial/genética , Ríos , Filogeografía , Pueblo Asiatico , China , Genética de Población , ADN Mitocondrial/genética
10.
Int J Neuropsychopharmacol ; 26(6): 415-425, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37208298

RESUMEN

BACKGROUND: Phosphodiesterase 2A (PDE2A) represents a novel target for new therapies addressing psychiatric disorders. To date, the development of PDE2A inhibitors suitable for human clinical evaluation has been hampered by the poor brain accessibility and metabolic stability of the available compounds. METHODS: Corticosterone (CORT)-induced neuronal cell lesion and restraint stress mouse model were used to measure the neuroprotective effect in cells and antidepressant-like behavior in mice. RESULTS: The cell-based assay showed that both Hcyb1 and PF were potent in protecting cells against stress hormone CORT insults by stimulating cAMP and cGMP signaling in hippocampal cells (HT-22). Administration of both compounds before treatment of CORT to cells increased cAMP/cGMP, VASP phosphorylation at Ser239 and Ser157, cAMP response element binding protein phosphorylation at Ser133, and brain derived neurotrophic factor BDNF expression. Further in vivo study showed that both Hcyb1 and PF displayed -antidepressant- and anxiolytic-like effects against restraint stress as indicated by reduced immobility time in the forced swimming and tail suspension tasks as well as increased open arm entries and time spent in open arms and holes visit in elevated plus maze and hole-board tests, respectively. The biochemical study confirmed that these antidepressant- and anxiolytic-like effects of Hcyb1 and PF were related to cAMP and cGMP signaling in the hippocampus. CONCLUSIONS: The results extend the previous studies and validate that PDE2A is a tractable target for drug development in the treatment of emotional disorders such as depression and anxiety.


Asunto(s)
Ansiolíticos , Inhibidores de Fosfodiesterasa , Ratones , Humanos , Animales , Inhibidores de Fosfodiesterasa/farmacología , Depresión/psicología , Ansiolíticos/farmacología , Antidepresivos/uso terapéutico , Ansiedad/tratamiento farmacológico , Ansiedad/inducido químicamente , Hipocampo , Hidrolasas Diéster Fosfóricas/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Conducta Animal , Modelos Animales de Enfermedad
11.
Mol Biol Rep ; 50(1): 749-759, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36309614

RESUMEN

Microglia are resident macrophages of the central nervous system (CNS). It plays a significant role in immune surveillance under physiological conditions. On stimulation by pathogens, microglia change their phenotypes, phagocytize toxic molecules, secrete pro-inflammatory/anti-inflammatory factors, promotes tissue repair, and maintain the homeostasis in CNS. Accumulation of myelin debris in multiple sclerosis (MS)/experimental autoimmune encephalomyelitis (EAE) inhibits remyelination by decreasing the phagocytosis by microglia and prevent the recovery of MS/EAE. Drug induced microglia phagocytosis could be a novel therapeutic intervention for the treatment of MS/EAE. But the abnormal phagocytosis of neurons and synapses by activated microglia will lead to neuronal damage and degeneration. It indicates that the phagocytosis of microglia has many beneficial and harmful effects in central neurodegenerative diseases. Therefore, simply promoting or inhibiting the phagocytic activity of microglia may not achieve ideal therapeutic results. However, limited reports are available to elucidate the microglia mediated phagocytosis and its underlying molecular mechanisms. On this basis, the present review describes microglia-mediated phagocytosis, drug-induced microglia phagocytosis, molecular mechanism, and novel approach for MS/EAE treatment.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Ratones , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Microglía , Fagocitosis , Macrófagos , Ratones Endogámicos C57BL
12.
Int J Clin Pract ; 2023: 3027092, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113405

RESUMEN

Objective: The objective of this study was to design and validate a nomogram of intranasal corticosteroid (INCS) insensitivity for adult patients with allergic rhinitis (AR). Methods: Training and validation datasets comprised randomly divided groups of AR patients diagnosed between 2019 and 2022, with a 7 : 3 ratio. These patients were categorized according to their INCS insensitivity status, and LASSO and multivariate logistic regression analyses were conducted to identify associated risk factors. These factors were incorporated into a nomogram for predicting INCS insensitivity. The performance of the nomogram was assessed using receiver operating characteristic (ROC) curves, calibration curves, and discrimination techniques. Results: In this study, 313 patients were included, of which 120 (38.3%) showed INCS insensitivity. The type of AR, comorbidities, family history of AR, and duration of AR were identified as predictors and incorporated into the nomogram using least absolute shrinkage and selection operator and multivariate logistic regression. The calibration curves showed excellent agreement between predicted and actual probabilities of INCS insensitivity in both the training and validation sets. The area under the curve values observed in the validation set were 0.918 (95% confidence interval, 0.859-0.943), and 0.932 (95% confidence interval, 0.849-0.953) in the training set, indicating strong performance on both sets. Decision curve analysis showed that the constructed nomogram yielded a net clinical benefit for AR patients. Conclusion: The nomogram constructed from risk predictors of INCS insensitivity in patients with AR demonstrated strong predictive power and enabled clinicians to identify high-risk patients, aiding them in developing an optimal treatment plan for AR.


Asunto(s)
Pueblos del Este de Asia , Rinitis Alérgica , Humanos , Adulto , Nomogramas , Corticoesteroides , Curva ROC , Rinitis Alérgica/diagnóstico
13.
Bull Entomol Res ; 113(2): 282-291, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503531

RESUMEN

Liriomyza trifolii is a significant pest of vegetable and ornamental crops across the globe. Microwave radiation has been used for controlling pests in stored products; however, there are few reports on the use of microwaves for eradicating agricultural pests such as L. trifolii, and its effects on pests at the molecular level is unclear. In this study, we show that microwave radiation inhibited the emergence of L. trifolii pupae. Transcriptomic studies of L. trifolii indicated significant enrichment of differentially expressed genes (DEGs) in 'post-translational modification, protein turnover, chaperones', 'sensory perception of pain/transcription repressor complex/zinc ion binding' and 'insulin signaling pathway' when analyzed with the Clusters of Orthologous Groups, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes databases, respectively. The top DEGs were related to reproduction, immunity and development and were significantly expressed after microwave radiation. Interestingly, there was no significant difference in the expression of genes encoding heat shock proteins or antioxidant enzymes in L. trifolii treated with microwave radiation as compared to the untreated control. The expression of DEGs encoding cuticular protein and protein takeout were silenced by RNA interference, and the results showed that knockdown of these two DEGs reduced the survival of L. trifolii exposed to microwave radiation. The results of this study help elucidate the molecular response of L. trifolii exposed to microwave radiation and provide novel ideas for control.


Asunto(s)
Dípteros , Microondas , Animales , Pupa/genética , Pupa/metabolismo , Proteínas de Choque Térmico/genética , Verduras
14.
J Integr Plant Biol ; 65(3): 854-875, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36308720

RESUMEN

NAC transcription factors (TFs) play critical roles in plant immunity by modulating the expression of downstream genes via binding to specific cis-elements in promoters. Here, we report the function and regulatory network of a pathogen- and defense phytohormone-inducible NAC TF gene, ONAC083, in rice (Oryza sativa) immunity. ONAC083 localizes to the nucleus and exhibits transcriptional activation activity that depends on its C-terminal region. Knockout of ONAC083 enhances rice immunity against Magnaporthe oryzae, strengthening pathogen-induced defense responses, and boosting chitin-induced pattern-triggered immunity (PTI), whereas ONAC083 overexpression has opposite effects. We identified ONAC083-binding sites in the promoters of 82 genes, and showed that ONAC083 specifically binds to a conserved element with the core sequence ACGCAA. ONAC083 activated the transcription of the genes OsRFPH2-6, OsTrx1, and OsPUP4 by directly binding to the ACGCAA element. OsRFPH2-6, encoding a RING-H2 protein with an N-terminal transmembrane region and a C-terminal typical RING domain, negatively regulated rice immunity against M. oryzae and chitin-triggered PTI. These data demonstrate that ONAC083 negatively contributes to rice immunity against M. oryzae by directly activating the transcription of OsRFPH2-6 through the ACGCAA element in its promoter. Overall, our study provides new insight into the molecular regulatory network of NAC TFs in rice immunity.


Asunto(s)
Magnaporthe , Oryza , Factores de Transcripción/metabolismo , Oryza/genética , Magnaporthe/fisiología , Inmunidad de la Planta/fisiología , Regulación de la Expresión Génica de las Plantas , Quitina/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad
15.
Gastroenterology ; 161(5): 1552-1566.e12, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34371001

RESUMEN

BACKGROUND & AIMS: Enterotoxigenic Bacteroides fragilis (ETBF) is strongly associated with the occurrence of inflammatory bowel disease (IBD), colitis-associated colorectal cancer, and colorectal cancer (CRC). However, the mechanism of ETBF-induced intestinal inflammation and tumorigenesis remains unclear. METHODS: microRNA sequencing was used to detect the differentially expressed microRNAs in both ETBF-treated cells and exosomes derived from ETBF-inoculated cells. Cell Counting Kit 8 assays were used to evaluate the effect of ETBF and exosomes on CRC cell proliferation. The biological role and mechanism of ETBF-mediated miR-149-3p in colitis and colon carcinogenesis were determined both in vitro and in vivo. RESULTS: ETBF promoted CRC cell proliferation by down-regulating miR-149-3p both in vitro and in vivo. ETBF-down-regulated miR-149-3p depended on METTL14-mediated N6-methyladenosine methylation. As the target gene of miR-149-3p, PHF5A transactivated SOD2 through regulating KAT2A messenger RNA alternative splicing after ETBF treatment in CRC cells. miR-149-3p could be released in exosomes and mediated intercellular communication by modulating T-helper type 17 cell differentiation. The level of plasma exosomal miR-149-3p was gradually decreased from healthy control individuals to patients with IBD and CRC. miR-149-3p, existing in plasma exosomes, negatively correlated with the abundance of ETBF in patients with IBD and CRC. CONCLUSIONS: Exosomal miR-149-3p derived from ETBF-treated cells facilitated T-helper type 17 cell differentiation. ETBF-induced colorectal carcinogenesis depended on down-regulating miR-149-3p and further promoting PHF5A-mediated RNA alternative splicing of KAT2A in CRC cells. Targeting the ETBF/miR-149-3p pathway presents a promising approach to treat patients with intestinal inflammation and CRC with a high amount of ETBF.


Asunto(s)
Bacteroides fragilis/patogenicidad , Colitis Ulcerosa/microbiología , Colon/microbiología , Neoplasias Colorrectales/microbiología , Enfermedad de Crohn/microbiología , Exosomas/microbiología , MicroARNs/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Colon/metabolismo , Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Modelos Animales de Enfermedad , Exosomas/genética , Exosomas/metabolismo , Células HCT116 , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , MicroARNs/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
16.
Environ Microbiol ; 24(3): 1200-1220, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34587346

RESUMEN

Fusarium oxysporum f. sp. niveum (Fon) is a soil-borne fungus causing vascular Fusarium wilt on watermelon; however, the molecular network regulating Fon virulence remains to be elucidated. Here, we report the function and mechanism of nucleotide sugar transporters (Nsts) in Fon. Fon genome harbours nine FonNst genes with distinct functions in vegetative growth, asexual production, cell wall stress response and virulence. FonNst2 and FonNst3 are required for full virulence of Fon on watermelon and FonNst2 is mainly involved in fungal colonization of the plant tissues. FonNst2 and FonNst3 form homo- or hetero-dimers but function independently in Fon virulence. FonNst2, which has UDP-galactose transporter activity in yeast, interacts with FonEro1 and FonPdi1, both of which are required for full virulence of Fon. FonNst2, FonPdi1 and FonEro1 target to endoplasmic reticulum (ER) and are essential for ER homeostasis and function. FonEro1-FonPdi1 module catalyses the dimerization of FonNst2, which is critical for Fon virulence. Undimerized FonNst2 is unstable and degraded via ER-associated protein degradation in vivo. These data demonstrate that FonEro1-FonPdi1 module-catalysed dimerization of FonNst2 is critical for Fon virulence on watermelon and provide new insights into the regulation of virulence in plant fungal pathogens via disulfide bond formation of key pathogenicity factors.


Asunto(s)
Citrullus , Fusarium , Catálisis , Citrullus/genética , Citrullus/microbiología , Dimerización , Nucleótidos , Enfermedades de las Plantas/microbiología , Azúcares , Virulencia/genética
17.
Health Qual Life Outcomes ; 20(1): 62, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35413910

RESUMEN

BACKGROUND: Crohn's disease (CD) is a chronic disease that may have an adverse impact on health-related quality of life (HRQoL). This study aimed to describe the HRQoL of CD patients and assess correlating factors using the EQ-5D-5L in China. METHODS: We recruited CD patients at Shanghai Renji Hospital from October 2018 to May 2019. The data collected included demographic and clinical information, medical expenditures, and EQ-5D-5L questionnaire responses. The chi-square test or Fisher's exact test was applied to analyse the proportion of patients in subgroups at each level. After the selection of correlating variables by univariate analysis, multivariate regression analyses were used to explore the correlating factors of HRQoL in CD patients. RESULTS: A total of 202 CD inpatients with a mean disease duration of 3.3 years were enrolled in the study. A total of 71.8% of patients were males, and 49.5% of patients were aged between 30 and 49 years. The average EQ-5D-5L utility score was 0.85, with a standard deviation (SD) of 0.12. Males, ileum lesions, remission status, and lower expenditure predicted higher EQ-5D-5L scores. In each EQ-5D-5L dimension, the proportion of patients differed significantly by gender, disease activity and location subgroup. In the multivariate regression models, being in an active CD state and using antibiotics had significantly adverse impacts on HRQoL (p < 0.05). CONCLUSIONS: CD may have a significant negative impact on HRQoL in Chinese CD patients. Being in an active phase of the disease and using antibiotics were identified as affecting HRQoL.


Asunto(s)
Enfermedad de Crohn , Calidad de Vida , Adulto , Antibacterianos , China , Estudios Transversales , Estado de Salud , Humanos , Masculino , Persona de Mediana Edad , Encuestas y Cuestionarios
18.
Anim Biotechnol ; : 1-6, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369830

RESUMEN

Growth hormone receptor (GHR) gene is considered to be an important candidate gene in growth traits. Therefore, the purpose of this study was to detect whether there were potential indel variations in the GHR gene that were related to the growth traits of the Shaanbei white cashmere goats (SBWC). In this study, genomic DNA from 931 healthy SBWC individuals were used to verify the relationship between the indel of the GHR gene and growth traits. Two indel variants, P49-bp indel in intron 1 and P1410-bp indel in 3'-UTR, were confirmed. Association analyses demonstrated that these two indel polymorphism loci were associated with the chest circumference and chest width of SBWC. Additionally, for the P49-bp and P1410-bp indel loci, the ID and II genotypes were dominant genotypes, respectively. Moreover, the genotypic distributions of these two indel loci in SBWC were significantly different from those in three other Chinese indigenous goat breeds (HNBG, GZDG and IMWC) (p < 0.05). Taken together, two indel loci (P49-bp indel and P1410-bp indel) both significantly affected the growth traits of goats. This illustrated that these two indel loci might be the potential DNA marker for use in improving the selection and breeding of goats.

19.
Pestic Biochem Physiol ; 188: 105263, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36464368

RESUMEN

The leafminer Liriomyza trifolii is an important insect pest of ornamental and vegetable crops worldwide. Cyromazine is an effective, commonly-used insecticide that functions as a growth regulator, but its effect on L. trifolii has not been previously reported. In this study, transcriptome analysis was undertaken in L. trifolii exposed to cyromazine. Clusters of orthologous groups analysis indicated that a large number of differentially expressed genes responding to cyromazine were categorized as "lipid transport and metabolism", "post-translational modification, protein turnover, chaperones", and "cell wall/membrane/envelope biogenesis". Gene ontology analysis indicated that pathways associated with insect hormones, growth and development, and cuticle synthesis were significantly enriched. In general, the transcriptome results showed that the genes related to insect hormones were significantly expressed after treatment with cyromazine. Furthermore, the combined exposure of L. trifolii to cyromazine and the hormone analogues 20-hydroxyecdysone (20E) or juvenile hormone (JH) indicated that hormone analogues can change the expression pattern of hormone-related genes (20EP and JHEH) and pupal length. The combined application of cyromazine with 20E improved the survival rate of L. trifolii, whereas the combination of JH and cyromazine reduced survival. The results of this study help elucidate the mechanistic basis for cyromazine toxicity and provide a foundation for understanding cyromazine resistance.


Asunto(s)
Dípteros , Hormonas de Insectos , Insecticidas , Animales , Dípteros/genética , Insecticidas/toxicidad , Triazinas/toxicidad , Hormonas Juveniles/farmacología
20.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054806

RESUMEN

We previously showed that overexpression of the rice ERF transcription factor gene OsBIERF3 in tobacco increased resistance against different pathogens. Here, we report the function of OsBIERF3 in rice immunity and abiotic stress tolerance. Expression of OsBIERF3 was induced by Xanthomonas oryzae pv. oryzae, hormones (e.g., salicylic acid, methyl jasmonate, 1-aminocyclopropane-1-carboxylic acid, and abscisic acid), and abiotic stress (e.g., drought, salt and cold stress). OsBIERF3 has transcriptional activation activity that depends on its C-terminal region. The OsBIERF3-overexpressing (OsBIERF3-OE) plants exhibited increased resistance while OsBIERF3-suppressed (OsBIERF3-Ri) plants displayed decreased resistance to Magnaporthe oryzae and X. oryzae pv. oryzae. A set of genes including those for PRs and MAPK kinases were up-regulated in OsBIERF3-OE plants. Cell wall biosynthetic enzyme genes were up-regulated in OsBIERF3-OE plants but down-regulated in OsBIERF3-Ri plants; accordingly, cell walls became thicker in OsBIERF3-OE plants but thinner in OsBIERF3-Ri plants than WT plants. The OsBIERF3-OE plants attenuated while OsBIERF3-Ri plants enhanced cold tolerance, accompanied by altered expression of cold-responsive genes and proline accumulation. Exogenous abscisic acid and 1-aminocyclopropane-1-carboxylic acid, a precursor of ethylene biosynthesis, restored the attenuated cold tolerance in OsBIERF3-OE plants while exogenous AgNO3, an inhibitor of ethylene action, significantly suppressed the enhanced cold tolerance in OsBIERF3-Ri plants. These data demonstrate that OsBIERF3 positively contributes to immunity against M. oryzae and X. oryzae pv. oryzae but negatively regulates cold stress tolerance in rice.


Asunto(s)
Adaptación Fisiológica , Frío , Oryza/microbiología , Oryza/fisiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/farmacología , Bacterias/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Pared Celular/ultraestructura , Resistencia a la Enfermedad/inmunología , Sequías , Etilenos/farmacología , Hongos/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Magnaporthe/efectos de los fármacos , Magnaporthe/fisiología , Oryza/efectos de los fármacos , Oryza/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Tolerancia a la Sal/efectos de los fármacos , Tolerancia a la Sal/genética , Estrés Fisiológico , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Xanthomonas/efectos de los fármacos , Xanthomonas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA