Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(15): e202400012, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38340327

RESUMEN

Hollow nanoporous carbon architectures (HNCs) present significant utilitarian value for a wide variety of applications. Facile and efficient preparation of HNCs has long been pursued but still remains challenging. Herein, we for the first time demonstrate that single-component metal-organic frameworks (MOFs) crystals, rather than the widely reported hybrid ones which necessitate tedious operations for preparation, could enable the facile and versatile syntheses of functional HNCs. By controlling the growth kinetics, the MOFs crystals (STU-1) are readily engineered into different shapes with designated styles of crystalline inhomogeneity. A subsequent one-step pyrolysis of these MOFs with intraparticle difference can induce a simultaneous self-hollowing and carbonization process, thereby producing various functional HNCs including yolk-shell polyhedrons, hollow microspheres, mesoporous architectures, and superstructures. Superior to the existing methods, this synthetic strategy relies only on the complex nature of single-component MOFs crystals without involving tedious operations like coating, etching, or ligand exchange, making it convenient, efficient, and easy to scale up. An ultra-stable Na-ion battery anode is demonstrated by the HNCs with extraordinary cyclability (93 % capacity retention over 8000 cycles), highlighting a high level of functionality of the HNCs.

2.
J Am Chem Soc ; 145(9): 5105-5113, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36795482

RESUMEN

Covalent organic framework (COF) materials with porous character and robust structure have significant applied implications for K-ion battery (KIB) anodes, but they are limited by the low reversible capacity and inferior rate capability. Here, based on theoretical calculations, we identified that a porous bulk COF featuring numerous pyrazines and carbonyls in the π-conjugated periodic skeleton could provide multiple accessible redox-active sites for high-performance potassium storage. Its porous structure with a surface-dominated storage mechanism enabled the fast and stable storage of K-ions. Its insolubility in organic electrolytes and small volumetric change after potassiation ensured a robust electrode for stable cycling. As a KIB anode, this bulk COF demonstrated an unprecedentedly outstanding combination of reversible capacity (423 mAh g-1 at 0.1 C), rate capability (185 mAh g-1 at 10 C), and cyclability. The theoretical simulation and comprehensive characterizations confirmed the active sites are contributed by C═O, C═N, and the cation-π effect.

3.
Angew Chem Int Ed Engl ; 60(46): 24467-24472, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34519413

RESUMEN

Heteroaromatic-conjugated aromatic molecules have inspired numerous interests in rechargeable batteries like Li-ion batteries, but were limited by low conductivity and easy dissolution in electrolytes. Herein, we immobilize a nitrogen-rich aromatic molecule tricycloquinazoline (TQ) and CuO4 unit into a two-dimensional (2D) conductive metal-organic framework (MOF) to unlock their potential for Li+ storage. TQ was identified redox activity with Li+ for the first time. With a synergistic effect of TQ and CuO4 unit, the 2D conductive MOF, named Cu-HHTQ (HHTQ=2,3,7,8,12,13-hexahydroxytricycloquinazoline), can facilitate the Li+ /e- transport and ensure a resilient electrode, resulting in a high capacity of 657.6 mAh g-1 at 600 mA g-1 with extraordinary high-rate capability and impressive cyclability. Our findings highlight an efficient strategy of constructing electrode materials for energy storage with combining multiple redox-active moieties into conductive MOFs.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36289046

RESUMEN

Polymer anodes have inspired considerable research interest for Na-ion batteries (NIBs) owing to their high structural flexibility and resource sustainability but are limited by the sluggish electrode kinetics, insufficient cyclability, and inferior electronic conductivity which usually made a large fraction (20-50 wt %) of conductive carbon additive necessitated. Herein, using a polymeric carbon nitride (PCN) anode as an example, we demonstrated that a moderate pyrolysis of the polymer anode could not only reduce its optical bandgap to enhance its electronic conductivity but also tune its microstructures to facilitate Na+ transfer/storage and sustain the repeated sodiation/desodiation. When used as NIBs anode with 10 wt % conductive carbon adding for preparing the electrode film, the moderate-pyrolysis PCN can promise high specific capacity (351 mAh g-1 at 0.1C), superb rate capability (151 and 95 mAh g-1 at 10C and 20C, respectively), and ultrastable cyclability (88.5% capacity retention after 6500 cycles at 2C). This comprehensive battery performance is much better than that of the previously reported organic counterparts. Our finding opened a new avenue in designing high-performance polymer anode for Na-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA