Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(3)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38534493

RESUMEN

Disease diagnosis represents a critical and arduous endeavor within the medical field. Artificial intelligence (AI) techniques, spanning from machine learning and deep learning to large model paradigms, stand poised to significantly augment physicians in rendering more evidence-based decisions, thus presenting a pioneering solution for clinical practice. Traditionally, the amalgamation of diverse medical data modalities (e.g., image, text, speech, genetic data, physiological signals) is imperative to facilitate a comprehensive disease analysis, a topic of burgeoning interest among both researchers and clinicians in recent times. Hence, there exists a pressing need to synthesize the latest strides in multi-modal data and AI technologies in the realm of medical diagnosis. In this paper, we narrow our focus to five specific disorders (Alzheimer's disease, breast cancer, depression, heart disease, epilepsy), elucidating advanced endeavors in their diagnosis and treatment through the lens of artificial intelligence. Our survey not only delineates detailed diagnostic methodologies across varying modalities but also underscores commonly utilized public datasets, the intricacies of feature engineering, prevalent classification models, and envisaged challenges for future endeavors. In essence, our research endeavors to contribute to the advancement of diagnostic methodologies, furnishing invaluable insights for clinical decision making.

2.
Bioengineering (Basel) ; 11(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38927831

RESUMEN

This paper presents an eye image segmentation-based computer-aided system for automatic diagnosis of ocular myasthenia gravis (OMG), called OMGMed. It provides great potential to effectively liberate the diagnostic efficiency of expert doctors (the scarce resources) and reduces the cost of healthcare treatment for diagnosed patients, making it possible to disseminate high-quality myasthenia gravis healthcare to under-developed areas. The system is composed of data pre-processing, indicator calculation, and automatic OMG scoring. Building upon this framework, an empirical study on the eye segmentation algorithm is conducted. It further optimizes the algorithm from the perspectives of "network structure" and "loss function", and experimentally verifies the effectiveness of the hybrid loss function. The results show that the combination of "nnUNet" network structure and "Cross-Entropy + Iou + Boundary" hybrid loss function can achieve the best segmentation performance, and its MIOU on the public and private myasthenia gravis datasets reaches 82.1% and 83.7%, respectively. The research has been used in expert centers. The pilot study demonstrates that our research on eye image segmentation for OMG diagnosis is very helpful in improving the healthcare quality of expert doctors. We believe that this work can serve as an important reference for the development of a similar auxiliary diagnosis system and contribute to the healthy development of proactive healthcare services.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA