RESUMEN
Phytochemical studies on the leaves and twigs of Garcinia oligantha Merr. led to the isolation of twelve previously undescribed depsidone derivatives (oliganthdepsidones A-L, 1-12). Their structures were elucidated by extensive spectroscopic analysis including 1H and 13C NMR, HSQC, HMBC and NOESY along with HRESIMS. The structures of oliganthdepsidones G and J were finally determined using DFT-NMR chemical shift calculations and DP4+ methods. Cytotoxicity test in four human cancer cell lines indicated that oliganthdepsidone F had relatively strong cytotoxic effect against A375 (melanoma), A549 (lung cancer), HepG2 (liver cancer), and MCF-7 (breast cancer) cell lines with IC50 of 18.71, 15.44, 10.92, and 15.90 µM, respectively. The dose- and time-dependent antiproliferative effects of oliganthdepsidone F on these cell lines were also observed by CCK-8 test. As determined by fluorescent microscopy and flow cytometry in these cell lines, oliganthdepsidone F could promote cell apoptosis, leading to the inhibition of cell proliferation. The results of wound healing assay and transwell assay showed that oliganthdepsidone F could inhibit the migration and invasion of A549 and MCF-7 cell lines in a concentration-dependent manner.
Asunto(s)
Antineoplásicos Fitogénicos , Apoptosis , Proliferación Celular , Depsidos , Ensayos de Selección de Medicamentos Antitumorales , Garcinia , Lactonas , Humanos , Garcinia/química , Proliferación Celular/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Depsidos/química , Depsidos/farmacología , Depsidos/aislamiento & purificación , Estructura Molecular , Lactonas/química , Lactonas/farmacología , Lactonas/aislamiento & purificación , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Hojas de la Planta/químicaRESUMEN
BACKGROUND: Mutations in MPZL2, the characteristic genetic etiology of autosomal recessive deafness loci 111 (DFNB111), cause non-syndromic and moderate sensorineural hearing loss. METHODS: In this study, we analyzed the phenotype and genotype of eight pedigrees consisting of 10 hearing loss patients with bi-allelic pathogenic or likely pathogenic variants in MPZL2. These patients were identified from a 3272 Chinese patient cohort who underwent genetic testing. RESULTS: Apart from symmetrical and moderate sensorineural hearing loss, the MPZL2-related phenotype was characterized by progressive hearing loss with variation in the onset age (congenital defect to onset at the young adult stage). We determined that in the Chinese population, the genetic load of MPZL2 defects was 0.24% (8/3272) in patients diagnosed with hearing loss and 7.02% (8/114) in patients diagnosed with hereditary moderate sensorineural hearing loss caused by STRC, OTOA, OTOG, OTOGL, TECTA, MPZL2 and others. Three known MPZL2 variants (c.220C > T (p.Gln74*), c.68delC (p.Pro23Leufs*2), c.463delG (p.Ala155Leufs*10)) and a novel start loss variant (c.3G > T (p.Met1?)) were identified. MPZL2 c.220C > T was identified as the hotspot variant in the Chinese population and even in East Asia compared with c.72delA (p.Ile24Metfs*22) in European and West Asia through allele frequency. CONCLUSIONS: We concluded that apart from moderate HL, progressive HL is another character of MPZL2-related HL. No specified variant was verified for the progression of HL, the penetrance and expressivity cannot be determined yet. A novel MPZL2 variant at the start codon was identified, enriching the variant spectrum of MPZL2. The hotspot variants of MPZL2 vary in different ethnicities. This study provides valuable data for the diagnosis, prognosis evaluation and genetic counseling of patients with moderate sensorineural hearing loss related to MPZL2.
Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Humanos , Adulto Joven , Pueblo Asiatico/genética , Moléculas de Adhesión Celular , China , Sordera/etnología , Sordera/genética , Pérdida Auditiva Sensorineural/etnología , Pérdida Auditiva Sensorineural/genética , Péptidos y Proteínas de Señalización Intercelular , Proteínas de la MembranaRESUMEN
BACKGROUND: Myhre syndrome is a rare multisystem genetic disorder that is caused by de novo heterozygous gain-of-function variants in SMAD4. Patients with Myhre syndrome exhibit several phenotypes at different ages such as small size, autism, developmental delay, left-sided heart defects, and hearing loss and often have a characteristic facial appearance. The early clinical diagnosis of Myhre syndrome remains a major challenge, particularly in the first year of life. METHODS: A Chinese male infant with syndactyly of fingers, hypertelorism, short palpebral fissures, and short philtrum was enrolled into the ENT department of the Chinese PLA General Hospital. Whole exome sequencing analysis was used to detect the disease-causing variant. A literature review of Myhre syndrome was also performed. RESULTS: A recurrent de novo missense variant c.1498A > G p.I500V(p. Ile500Val) in SMAD4 was detected confirming the clinical diagnosis of Myhre syndrome at the age of 38 days. The infant appears to be the youngest reported case of Myhre syndrome. At 23-month follow-up, the affected infant has dysmorphic facial features, growth retardation, and previously undescribed complete syndactyly. Review the literatures noted several common features in Myhre syndrome patients including hearing loss (72.7%), characteristic facial features (26.0%-54.5%), finger and toe abnormalities (3.9%-48.1%), short stature (45.5%), and respiratory (30.0%) and cardiovascular problems (65.0%). CONCLUSIONS: Clinicians should have a low threshold to perform genetic testing on patients with features suggesting Myhre syndrome even in the first year of life. Although some individuals with Myhre syndrome have normal hearing, early onset or progressive hearing loss usually occur in one or both ears in most patients, with remarkable phenotypic heterogeneity. Syndactyly may be minor such as typical 2-3 toe involvement, or more complicated as was observed in our patient.
Asunto(s)
Sordera , Pérdida Auditiva , Discapacidad Intelectual , Sindactilia , Humanos , Masculino , Trastornos del Crecimiento/genética , Discapacidad Intelectual/genética , Recién NacidoRESUMEN
Pathogenic variants in MYO15A are known to cause autosomal recessive nonsyndromic hearing loss (ARNSHL), DFNB3. We have previously reported on one ARNSHL family including two affected siblings and identified MYO15A c.5964+3G > A and c.8375 T > C (p.Val2792Ala) as the possible deafness-causing variants. Eight year follow up identified one new affected individual in this family, who also showed congenital, severe to profound sensorineural hearing loss. By whole exome sequencing, we identified a new splice-site variant c.5531+1G > C (maternal allele), in a compound heterozygote with previously identified missense variant c.8375 T > C (p.Val2792Ala) (paternal allele) in MYO15A as the disease-causing variants. The new affected individual underwent unilateral cochlear implantation at the age of 1 year, and 5 year follow-up showed satisfactory speech and language outcomes. Our results further indicate that MYO15A-associated hearing loss is good candidates for cochlear implantation, which is in accordance with previous report. In light of our findings and review of the literatures, 58 splice-site variants in MYO15A are correlated with a severe deafness phenotype, composed of 46 canonical splice-site variants and 12 non-canonical splice-site variants.