Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-30013955

RESUMEN

Classical swine fever virus (CSFV) is a classic Flavivirus that causes the acute, febrile, and highly contagious disease known as classical swine fever (CSF). Inflammasomes are molecular platforms that trigger the maturation of proinflammatory cytokines to engage innate immune defenses that are induced upon cellular infection or stress. However, the relationship between the inflammasome and CSFV infection has not been thoroughly characterized. To understand the function of the inflammasome response to CSFV infection, we infected porcine peripheral blood monocytes (PBMCs) with CSFV. Our results indicated that CSFV infection induced both the generation of pro-interleukin-1ß (pro-IL-1ß) and its processing in monocytes, leading to the maturation and secretion of IL-1ß through the activation of caspase 1. Moreover, CSFV infection in PBMCs induced the production and cleavage of gasdermin D (GSDMD), which is an inducer of pyroptosis. Additional studies showed that CSFV-induced IL-1ß secretion was mediated by NLRP3 and that CSFV infection could sufficiently activate the assembly of the NLRP3 inflammasome in monocytes. These results revealed that CSFV infection inhibited the expression of NLRP3, and knockdown of NLRP3 enhanced the replication of CSFV. In conclusion, these findings demonstrate that the NLRP3 inflammasome plays an important role in the innate immune response to CSFV infection.


Asunto(s)
Virus de la Fiebre Porcina Clásica/inmunología , Inmunidad Innata , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Monocitos/inmunología , Monocitos/virología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Células Cultivadas , Hidrólisis , Porcinos
2.
Front Microbiol ; 8: 862, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28553280

RESUMEN

Pestiviruses are highly variable RNA viruses. A growing number of novel pestiviruses has been discovered in domestic and wild species in the last two decades. Recently, a novel atypical porcine pestivirus (APPV) linked with the development of congenital tremor (CT) in neonatal pigs was described in Europe and the Americas. Here, the first Asian APPV complete polyprotein coding sequence was assembled from serum samples from newborn piglets affected with CT in Southern China, and termed APPV_GD. 14 organ samples from affected piglets were analyzed by quantitative RT-PCR (qRT-PCR) to investigate the tissue tropism of APPV, and 135 serum samples from pigs from 10 farms were used for identifying APPV in adult pigs. The highest genome loads were found in submaxillary lymph nodes, and PCR-based detection showed that APPV genomes were present in seven samples from five farms. A phylogenetic tree was constructed based on the full-length genomes of the pestiviruses, and APPV_GD appeared on a new branch with another newly discovered APPV. Nucleotide identity analysis demonstrated that APPV_GD shared the highest nucleotide sequence identity with a German APPV. Bayesian inference was performed using 25 partial sequences of the APPV NS5B gene (528 bp) isolated from four countries in recent years. According to this analysis, the most recent common ancestor (tMRCA) of the current APPV strains might have emerged in Germany and then diversified and spread to Asia, the Americas, and other countries in Europe. However, the result of bayesian inference could change when more APPV strains are isolated in the future. The present study is the first to report APPV in China and infers the origin and dissemination of the current strains of the virus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA