Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Nano Lett ; 24(10): 3204-3212, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416569

RESUMEN

The flicker frequency of incident light constitutes a critical determinant in biology. Nevertheless, the exploration of methods to simulate external light stimuli with varying frequencies and develop artificial retinal neurons capable of responsive behavior remains an open question. This study presents an artificial neuron comprising organic phototransistors. The triggering properties of neurons are modulated by optical input, enabling them to execute rudimentary synaptic functions, emulating the biological characteristics of retinal neurons. The artificial retinal neuron exhibits varying responses to incoming light frequencies, allowing it to replicate the persistent visual behavior of the human eye and facilitating image discrimination. Additionally, through seamless integration with circuitry, it can execute motion recognition on a machine cart, preventing collisions with high-speed obstacles. The artificial retinal neuron offers a cost-effective and energy-efficient route for future mobile robot processors.


Asunto(s)
Retina , Visión Ocular , Humanos , Neuronas/fisiología
2.
Small ; 20(26): e2308836, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38258401

RESUMEN

Mixed-cation perovskite solar cells (PSCs) have attracted much attention because of the advantages of suitable bandgap and stability. It is still a challenge to rationally design and modify the perovskite/tin oxide (SnO2) heterogeneous interface for achieving highly efficient and stable PSCs. Herein, a strategy of one-stone-for-three-birds is proposed to achieve multi-functional interface regulation via introducing N-Chlorosuccinimide (NCS) into the solution of SnO2: i) C═O functional group in NCS can induces strong binding affinity to uncoordinated defects (oxygen vacancies, free lead ions, etc) at the buried interface and passivate them; ii) incomplete in situ hydrolysis reactions can occur spontaneously and adjust the pH value of the SnO2 solution to achieve a more matchable energy level; iii) effectively releasing the residual stress of the underlying perovskite. As a result, a champion power conversion efficiency (PCE) of 24.74% is achieved with a device structure of ITO/SnO2/Perovskite/Spiro-OMeTAD/Ag, which is one of the highest values for cesium-formamidinium-methylammonium (CsFAMA) triple cation PSCs. Furthermore, the device without encapsulation can sustain 94.6% of its initial PCE after the storage at room temperature and relative humidity (RH) of 20% for 40 days. The research provides a versatile way to manipulate buried interface for achieving efficient and stable PSCs.

3.
Nano Lett ; 23(11): 5264-5271, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37229610

RESUMEN

Optically readable organic synaptic devices have great potential in both artificial intelligence and photonic neuromorphic computing. Herein, a novel optically readable organic electrochemical synaptic transistor (OR-OEST) strategy is first proposed. The electrochemical doping mechanism of the device was systematically investigated, and the basic biological synaptic behaviors that can be read by optical means are successfully achieved. Furthermore, the flexible OR-OESTs are capable of electrically switching the transparency of semiconductor channel materials in a nonvolatile manner, and thus the multilevel memory can be achieved through optical readout. Finally, the OR-OESTs are developed for the preprocessing of photonic images, such as contrast enhancement and denoising, and feeding the processed images into an artificial neural network, achieving a recognition rate of over 90%. Overall, this work provides a new strategy for the implementation of photonic neuromorphic systems.

4.
Small ; 19(38): e2207185, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37226387

RESUMEN

Two-dimensional (2D) Ruddlesden-Popper (RP) layered halide perovskite has attracted wide attentions due to its unique structure and excellent optoelectronic properties. With inserting organic cations, inorganic octahedrons are forced to extend in a certain direction, resulting in an asymmetric 2D perovskite crystal structure and causing spontaneous polarization. The pyroelectric effect resulted from spontaneous polarization exhibits a broad prospect in the application of optoelectronic devices. Herein, 2D RP polycrystalline perovskite (BA)2 (MA)3 Pb4 I13 film with excellent crystal orientation is fabricated by hot-casting deposition, and a class of 2D hybrid perovskite photodetectors (PDs) with pyro-phototronic effect is proposed, achieving temperature and light detection with greatly improved performance by coupling multiple energies. Because of the pyro-phototronic effect, the current is ≈35 times to that of the photovoltaic effect current under 0 V bias. The responsivity and detectivity are 12.7 mA W-1 and 1.73 × 1011 Jones, and the on/off ratio can reach 3.97 × 103 . Furthermore, the influences of bias voltage, light power density, and frequency on the pyro-phototronic effect of 2D RP polycrystalline perovskite PDs are explored. The coupling of spontaneous polarization and light facilitates photo-induced carrier dissociation and tunes the carrier transport process, making 2D RP perovskites a competitive candidate for next-generation photonic devices.

5.
Small ; 19(24): e2300374, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919329

RESUMEN

Perovskite solar cells (PSCs) have emerged as one of the most promising and competitive photovoltaic technologies, and doctor-blading is a facile and robust deposition technique to efficiently fabricate PSCs in large scale, especially matching with roll-to-roll process. Herein, it demonstrates the encouraging results of one-step, antisolvent-free doctor-bladed methylammonium lead iodide (CH3 NH3 PbI3, MAPbI3 ) PSCs under a wide range of humidity from 45% to 82%. A synergy strategy of ionic-liquid methylammonium acetate (MAAc) and molecular phenylurea additives is developed to modulate the morphology and crystallization process of MAPbI3 perovskite film, leading to high-quality MAPbI3 perovskite film with large-size crystal, low defect density, and ultrasmooth surface. Impressive power conversion efficiency (PCE) of 20.34% is achieved for doctor-bladed PSCs under the humidity over 80% with a device structure of ITO/SnO2 /MAPbI3 /Spiro-OMeTAD/Ag. It is the highest PCEs for one-step solution-processed MAPbI3 PSCs without antisolvent assistance. The research provides a facile and robust large-scale deposition technique to fabricate highly efficient and stable PSCs under a wide range of humidity, even with the humidity over 80%.

6.
J Synchrotron Radiat ; 30(Pt 1): 84-89, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601929

RESUMEN

Crystal monochromators are indispensable optical components for the majority of beamlines at synchrotron radiation facilities. Channel-cut monochromators are sometimes chosen to filter monochromatic X-ray beams by virtue of their ultrahigh angular stability. Nevertheless, high-accuracy polishing on the inner diffracting surfaces remains challenging, thus hampering their performance in preserving the coherence or wavefront of the photon beam. Herein, a magnetically controlled chemical-mechanical polishing (MC-CMP) approach has been successfully developed for fine polishing of the inner surfaces of channel-cut crystals. This MC-CMP process relieves the constraints of narrow working space dictated by small offset requirements and achieves near-perfect polishing on the surface of the crystals. Using this method, a high-quality surface with roughness of 0.614 nm (root mean square, r.m.s.) is obtained in a channel-cut crystal with 7 mm gap designed for beamlines at the High Energy Photon Source, a fourth-generation synchrotron radiation source under construction. On-line X-ray topography and rocking-curve measurements indicate that the stress residual layer on the crystal surface was removed. Firstly, the measured rocking-curve width is in good agreement with the theoretical value. Secondly, the peak reflectivity is very close to theoretical values. Thirdly, topographic images of the optics after polishing were uniform without any speckle or scratches. Only a nearly 2.5 nm-thick SiO2 layer was observed on the perfect crystalline matrix from high-resolution transmission electron microscopy photographs, indicating that the structure of the bulk material is defect- and dislocation-free. Future development of MC-CMP is promising for fabricating wavefront-preserving and ultra-stable channel-cut monochromators, which are crucial to exploit the merits of fourth-generation synchrotron radiation sources or hard X-ray free-electron lasers.

7.
Opt Lett ; 48(4): 908-911, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36790972

RESUMEN

Near-perfect light harvesting of a metasurface-based absorber paves the way for achieving numerous potential applications in sensing, cloaking, and photovoltaics. Here, we present a reconfigurable perfect absorber based on a molybdenum ditelluride (MoTe2) hybrid metasurface at terahertz (THz) frequency. By investigating the optical response of metasurface-based absorbers, a reconfigurable switching of dual-frequency perfect absorption to a new single-frequency absorption takes place when light illuminates MoTe2. Moreover, the absorption mechanism of the hybrid metasurface is well demonstrated with the analytical coupled-dipole model and impedance analysis. The proposed reconfigurable THz meta-absorber provides a new, to the best of our knowledge, route for active radar stealth, frequency-selective detection, and next-generation wireless communication.

8.
Nano Lett ; 22(8): 3372-3379, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35343229

RESUMEN

Simulation of biological visual perception has gained considerable attention. In this paper, an optoelectrical In2O3 transistor array with a negative photoconductivity behavior is designed using a side-gate structure and a screen-printed ion-gel as the gate insulator. This paper is the first to observe a negative photoconductivity in electrolyte-gated oxide devices. Furthermore, an artificial visual perception system capable of self-adapting to environmental lightness is mimicked using the proposed device array. The transistor device array shows a self-adaptive behavior of light under different levels of light intensity, successfully demonstrating the visual adaption with an adjustable threshold range to the external environment. This study provides a new way to create an environmentally adaptive artificial visual perception system and has far-reaching significance for the future of neuromorphic electronics.


Asunto(s)
Electrólitos , Electrónica , Electrólitos/química , Óxidos
9.
Angew Chem Int Ed Engl ; 62(15): e202300314, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36788422

RESUMEN

Hole transport materials (HTMs) with high hole mobility, good band alignment and ease of fabrication are highly desirable for perovskite solar cells (PSCs). Here, we designed and synthesized novel organic HTMs, named T3, which can be synthesized in high yields with commercially available materials, featuring a substituted pyrrole core and triphenylamine peripheral arms. The capability of functionalization in the final synthetic step provides an efficient way to obtain a variety of T3-based HTMs with tunable energy levels and other properties. Among them, fluorine-substituted T3 (T3-F) exhibits the best band alignment and hole extraction properties, leading to PSCs with outstanding PCEs of 24.85 % and 24.03 % (certified 23.46 %) for aperture areas of 0.1 and 1 cm2 , respectively. The simple structure and tunable performance of T3 can inspire further optimization for efficient PSCs.

10.
Small ; 18(23): e2201831, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35507778

RESUMEN

Poor light stability hinders the potential applications of perovskite optoelectronic devices. Recent experiments have demonstrated that the passivation surface via forming strong chemical bonds (SO4 -Pb, PO4 -Pb, Cl-Pb, O-Pb, and S-Pb) could effectively improve the light stability of perovskite solar cells. However, the underlying reasons are not clear. Herein, the elusive underlying mechanisms of light stability enhancement are explained in detail using first principles calculations. The small polaron model and self-trapped exciton model demonstrate that an iodine vacancy defect on the surface of perovskite could trap a free electron under light illumination, which leads to a significant rearrangement of the Pb-I lattice and creats a new chemical species, i.e., a Pb-Pb dimer bound in the typical perovskite of CH3 NH3 PbI3 . The Pb-Pb dimer distorts the Pb-I octahedral lattice and reduces the defect formation energy of the I atoms. The surface Pb site passivation can prevent the formation of the Pb-Pb dimer, thereby improving the light stability. In addition, the strong ionic bond could better stabilize the Pb site. The in-depth understanding of the light stability and the passivation mechanism in this study can promote the application of perovskite optoelectronic devices.

11.
Phys Chem Chem Phys ; 24(39): 24123-24129, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36193645

RESUMEN

The stability of Sn-based perovskites has always been the main obstacle to their application. Interface engineering is a very effective method for improving the stability of perovskites and the efficiency of batteries. Two-dimensional (2D) monolayer SnS is selected as a surface-covering layer for the CsSnI3 lead-free perovskite. The structure, electronic properties, and stability of the CsSnI3-SnS heterostructure are studied using density functional theory. Due to the different contact interfaces (SnI2 and CsI interfaces) of CsSnI3, the interface electronic-transmission characteristics are inconsistent in the CsSnI3-SnS heterostructure. Because of the difference in work functions, electrons flow at the interface of the heterostructure, forming a built-in electric field. The heterostructures form a type-I energy-level arrangement. Under the action of an electric field in the CsI-SnS heterostructure, electrons at the CsI interface recombine with holes at the SnS interface; however, the holes of the SnI2 interface and the electrons of the SnS interface are easily recombined in the SnI2-SnS heterostructure. Moreover, monolayer SnS can enhance the light absorption of the CsSnI3-SnS heterostructure. Monolayer SnS can inhibit the migration of iodine ions and effectively improve the structural stability of the SnI2-SnS interface heterostructure. This work provides a new theoretical basis for improving the stability of lead-free perovskites.

12.
Angew Chem Int Ed Engl ; 61(38): e202207762, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-35880625

RESUMEN

Manipulating the backbone of small molecule acceptors (SMAs) is of particular importance in developing efficient organic solar cells (OSCs). The common design is constructing 2-arm SMAs with linear or curved backbones. Herein, we report an acceptor 4A-DFIC with a 4-arm backbone unexpectedly generated in the reaction of an electron-rich aromatic diamine and hexaketocyclohexane. Single-crystal X-ray diffraction analysis indicates the rigid and twisted molecular plane and the effective molecular stacking of 4A-DFIC in solid state. 4A-DFIC shows a low band gap of 1.40 eV and excellent light-harvesting capability from visible to near-infrared region. Binary and ternary OSCs based on 4A-DFIC gave power conversion efficiencies (PCEs) of 15.76 % and 18.60 % (certified 18.1 %), respectively, which are the highest PCEs for multi-arm SMA-based OSCs to date.

13.
Small ; 17(32): e2102368, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34174144

RESUMEN

Flexible perovskite solar cells (f-PSCs) have been attracting tremendous attention due to their potentially commercial prospects in flexible energy system and mobile energy system. Reducing the energy barriers and charge extraction losses at the interfaces between perovskite and charge transport layers is essential to improve both efficiency and stability of f-PSCs. Herein, 4-trifluoromethylphenylethylamine iodide (CF3 PEAI) is introduced to form a 2D perovskite at the interface between perovskite and hole transport layer (HTL). It is found that the 2D perovskite plays a dual-functional role in aligning energy band between perovskite and HTL and passivating the traps in the 3D perovskite, thus reducing energy loss and charge carrier recombination at the interface, facilitating the hole transfer from perovskite to the Spiro-OMeTAD. Consequently, the photovoltaic performance of f-PSCs is significantly improved, leading to a power conversion efficiency (PCE) of 21.1% and a certified PCE of 20.5%. Furthermore, the long-term stability of f-PSCs is greatly improved through the protection of 2D perovskite layer to the underlying 3D perovskite. This work provides an excellent strategy to produce efficient and stable f-PSCs, which will accelerate their potential applications.

14.
Small ; 16(45): e2005217, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33035390

RESUMEN

Optoelectronic-neuromorphic transistors are vital for next-generation nanoscale brain-like computational systems. However, the hardware implementation of optoelectronic-neuromorphic devices, which are based on conventional transistor architecture, faces serious challenges with respect to the synchronous processing of photoelectric information. This is because mono-semiconductor material cannot absorb adequate light to ensure efficient light-matter interactions. In this work, a novel neuromorphic-photoelectric device of vertical van der Waals heterojunction phototransistors based on a colloidal 0D-CsPbBr3 -quantum-dots/2D-MoS2 heterojunction channel is proposed using a polymer ion gel electrolyte as the gate dielectric. A highly efficient photocarrier transport interface is established by introducing colloidal perovskite quantum dots with excellent light absorption capabilities on the 2D-layered MoS2 semiconductor with strong carrier transport abilities. The device exhibits not only high photoresponsivity but also fundamental synaptic characteristics, such as excitatory postsynaptic current, paired-pulse facilitation, dynamic temporal filter, and light-tunable synaptic plasticity. More importantly, efficiency-adjustable photoelectronic Pavlovian conditioning and photoelectronic hybrid neuronal coding behaviors can be successfully implemented using the optical and electrical synergy approach. The results suggest that the proposed device has potential for applications associated with next-generation brain-like photoelectronic human-computer interactions and cognitive systems.

15.
J Synchrotron Radiat ; 27(Pt 3): 577-582, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381756

RESUMEN

This article describes a high-efficiency experimental configuration for a self-referenced lattice comparator with a `brush beam' of synchrotron radiation from a bending magnet and two linear position-sensitive photon-counting-type X-ray detectors. The efficiency is more than ten times greater compared with the `pencil-beam' configuration and a pair of zero-dimensional detectors. A solution for correcting the systematic deviation of d-spacing measurements caused by the horizontal non-uniformity of the brush beam is provided. Also, the use of photon-counting-type one-dimensional detectors not only improves the spatial resolution of the measurements remarkably but can also adjust the sample's attitude angles easily.

16.
Phys Lett A ; 384(36): 126915, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33012965

RESUMEN

The complex symbiotic relationship in the industrial symbiosis network (ISN) may cause new risks for firms. In view of this problem, previous studies mainly regard the ISN as a static system, without considering the adaptive behavior of firms. This paper establishes a risk propagation model of the ISN based on the change of firm state, proposes four kinds of reconnection strategies to model the adaptive behavior, and uses numerical simulation to investigate the effect of adaptive behavior on risk propagation. The results demonstrate that all the reconnection strategies play an inhibitory role in the risk propagation. Therein, the effectiveness of PP strategy is the best, followed by RR strategy, and DP (SP) strategy. In any case, the effect of reconnection strategies on risk propagation will improve with the increase of the disconnection probability and network resilience. Additionally, the more decentralized weight distribution will weaken the inhibition of adaptive behavior on risk propagation.

17.
Phys Chem Chem Phys ; 21(38): 21341-21348, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31531467

RESUMEN

Electrochemically converting CO2 into fuels and chemicals is an appealing strategy to create energy rich products. The highly demanded product ethylene has been preferably produced on Cu-based catalysts with abundant exposed Cu(100) facets. However, the performance is still limited by the large energy barrier for the C-C dimerization. Here, to lower the energy barrier, we tailor the electronic structure of Cu(100) by doping a series of transition metals using the density functional theory (DFT) method. The zinc-doped Cu(100) surface has shown a superior catalytic performance. Mechanistic study further reveals that doping with Zn alters the electronic structure around Cu, adjusts the atomic arrangement in the active sites and makes the catalyst surface electronegative, which is conducive to the activation of acidic molecular CO2 and the reduction of the energy barrier for C-C dimerization. This work reveals that the doping of Cu with transition metals has great potential in promoting the electrochemical CO2-to-C2H4 conversion. This work also provides deep insights into the formation mechanisms of C2H4, thus guiding the design of Cu-based bimetallic catalysts for its effective production.

18.
Sensors (Basel) ; 19(13)2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31266226

RESUMEN

Electrocardiogram (ECG) signals are crucial for determining the health status of the human heart. A clean ECG signal is critical in analysis and diagnosis of heart diseases. However, ECG signals are often contaminated by motion artifact noise in the non-contact ECG monitoring systems. In this paper, an ECG motion artifact removal approach based on empirical wavelet transform (EWT) and wavelet thresholding (WT) is proposed. This method consists of five steps, namely, spectrum preprocessing, spectrum segmentation, EWT decomposition, wavelet threshold denoising, and EWT reconstruction. The proposed approach was used to process real ECG signals collected by the non-contact ECG monitoring equipment. The results of quantitative study and analysis indicate that this approach produces a better performance in terms of restorage of QRS complexes of the original ECG with reduced distortion, retaining useful information in ECG signals, and improvement of the signal to noise ratio (SNR) value of the signal. The output results of the practical ECG signal test show that motion artifact in the real recorded ECG is effectively filtered out. The proposed method is feasible for reducing motion artifacts from ECG signals, whether from simulation ECG signals or practical non-contact ECG monitoring systems.


Asunto(s)
Arritmias Cardíacas/diagnóstico , Electrocardiografía/métodos , Monitoreo Fisiológico , Procesamiento de Señales Asistido por Computador , Algoritmos , Simulación por Computador , Humanos , Movimiento (Física) , Análisis de Ondículas
19.
Small ; 13(29)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28561996

RESUMEN

Hardware implementation of artificial synapses/neurons with 2D solid-state devices is of great significance for nanoscale brain-like computational systems. Here, 2D MoS2 synaptic/neuronal transistors are fabricated by using poly(vinyl alcohol) as the laterally coupled, proton-conducting electrolytes. Fundamental synaptic functions, such as an excitatory postsynaptic current, paired-pulse facilitation, and a dynamic filter for information transmission of biological synapse, are successfully emulated. Most importantly, with multiple input gates and one modulatory gate, spiking-dependent logic operation/modulation, multiplicative neural coding, and neuronal gain modulation are also experimentally demonstrated. The results indicate that the intriguing 2D MoS2 transistors are also very promising for the next-generation of nanoscale neuromorphic device applications.

20.
Nanotechnology ; 26(22): 225601, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25961155

RESUMEN

Copper phthalocyanine (CuPc) nanostructure crystals, including nanoflower, nanoribbon, and nanowire, were controllably fabricated by temperature gradient physical vapor deposition (TG-PVD) through controlling the growth parameters. In a controllable growth system with carrier gas N2, nanoflower, nanoribbon, and nanowire crystals were formed in a high-temperature zone, medium-temperature zone, and low-temperature zone, respectively. They were proved to be ß-phase, coexist of α-phase and ß-phase, and α-phase respectively based on x-ray diffraction results. Furthermore, ultralong CuPc nanowires up to several millimeters could be fabricated by TG-PVD without carrier gas, and they were well-aligned to form large-area CuPc nanowire crystal arrays by the Langmuir-Blodgett method. The nanostructure crystals showed unusual optical absorption spectra from the ultraviolet-visible to near-infrared range, which was explained by the diffraction and scattering caused by the wavelength-sized nanostructures. These CuPc nanostructure crystals show potential applications in organic electronic and optoelectronic devices.


Asunto(s)
Indoles/síntesis química , Nanopartículas/química , Compuestos Organometálicos/síntesis química , Ensayo de Materiales , Nanopartículas/ultraestructura , Nanotecnología/métodos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA