Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Small ; 20(2): e2304311, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37697695

RESUMEN

Due to the increased integration and miniaturization of electronic devices, traditional electronic packaging materials, such as epoxy resin (EP), cannot solve electromagnetic interference (EMI) in electronic devices. Thus, the development of multifunctional electronic packaging materials with superior electromagnetic wave absorption (EMA), high heat dissipation, and flame retardancy is critical for current demand. This study employs an in-situ growth method to load layered double hydroxides (LDH) onto transition metal carbides (MXene), synthesizing a novel composite material (MXene@LDH). MXene@LDH possesses a sandwich structure and exhibits excellent EMA performance, thermal conductivity, and flame retardancy. By adjusting the load of LDH, under the synergistic effect of multiple factors, such as dielectric and polarization losses, this work achieves an EMA material with a remarkable minimum reflection loss (RL) of -52.064 dB and a maximum effective absorption bandwidth (EAB) of 4.5 GHz. Furthermore, MXene@LDH emerges a bridging effect in EP, namely MXene@LDH/EP, leading to a 118.75% increase in thermal conductivity compared to EP. Simultaneously, MXene@LDH/EP contributes to the enhanced flame retardancy compared to EP, resulting in a 46.5% reduction in the total heat release (THR). In summary, this work provides a promising candidate advanced electronic packaging material for high-power density electronic packaging.

2.
Small ; 20(5): e2306248, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759392

RESUMEN

The Bi0.5 Sb1.5 Te3 (BST) thin film shows great promise in harvesting low-grade heat energy due to its excellent thermoelectric performance at room temperature. In order to further enhance its thermoelectric performance, specifically the power factor and output power, new approaches are highly desirable beyond the common "composition-structure-performance" paradigm. This study introduces ferroelectric polarization engineering as a novel strategy to achieve these goals. A Pb(Zr0.52 Ti0.48 )O3 /Bi0.5 Sb1.5 Te3 (PZT/BST) hybrid film is fabricated via magnetron sputtering. Density functional theory calculations demonstrate PZT polarization's influence on charge redistribution and interlayer charge transfer at the PZT/BST interface, facilitating adjustable carrier transport behavior and power factor of the BST film. As a result, a 26.7% enhancement of the power factor, from unpolarized 12.0 to 15.2 µW cm-1 K-2 , is reached by 2 kV out-of-plane downward polarization of PZT. Furthermore, a five-leg generator constructed using this PZT/BST hybrid film exhibits a maximum output power density of 13.06 W m-2 at ΔT = 39 K, which is 20.8% higher than that of the unpolarized one (10.81 W m-2 ). The research presents a new approach to enhance thermoelectric thin films' power factor and output performance by introducing ferroelectric polarization engineering.

3.
Small ; : e2306786, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38061990

RESUMEN

There is increasing demand to power Internet of Things devices using ambient energy sources. Flexible, low-temperature, organic/inorganic thermoelectric devices are a breakthrough next-generation approach to meet this challenge. However, these systems suffer from poor performance and expensive processing preventing wide application of the technology. In this study, by combining a ferroelectric polymer (Polyvinylidene fluoride (PVDF, ß phase)) with p-type Bi0.5 Sb1.5 Te3 (BST) a thermoelectric composite film with maximum is produced power factor. Energy filter from ferroelectric-thermoelectric junction also leads to high Seebeck voltage ≈242 µV K-1 . For the first time, compelling evidence is provided that the dipole of a ferroelectric material is helping decouple electron transport related to carrier mobility and the Seebeck coefficient, to provide 5× or more improvement in thermoelectric power factor. The best composition, PVDF/BST film with BST 95 wt.% has a power factor of 712 µW•m-1  K-2 . A thermoelectric generator fabricated from a PVDF/BST film demonstrated Pmax T 12.02 µW and Pdensity 40.8 W m-2 under 50 K temperature difference. This development also provides a new insight into a physical technique, applicable to both flexible and non-flexible thermoelectrics, to obtain comprehensive thermoelectric performance.

4.
Small ; 19(29): e2301963, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37178393

RESUMEN

Cu2 SnS3 is a promising thermoelectric candidate for power generation at medium temperature due to its low-cost and environmental-benign features. However, the high electrical resistivity due to low hole concentration severely restricts its final thermoelectric performance. Here, analog alloying with CuInSe2 is first adopted to optimize the electrical resistivity by promoting the formation of Sn vacancies and the precipitation of In, and optimize lattice thermal conductivity through the formation of stacking faults and nanotwins. Such analog alloying enables a greatly enhanced power factor of 8.03 µW cm-1 K-2 and a largely reduced lattice thermal conductivity of 0.38 W m-1  K-1 for Cu2 SnS3 - 9 mol.% CuInSe2 . Eventually, a peak ZT as high as 1.14 at 773 K is achieved for Cu2 SnS3 - 9 mol.% CuInSe2 , which is one of the highest ZT among the researches on Cu2 SnS3 -based thermoelectric materials. The work implies analog alloying with CuInSe2 is a very effective route to unleash superior thermoelectric performance of Cu2 SnS3 .

5.
Small ; 19(35): e2300745, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37104824

RESUMEN

Interfacial charge effects, such as band bending, modulation doping, and energy filtering, are critical for improving electronic transport properties of superlattice films. However, effectively manipulating interfacial band bending has proven challenging in previous studies. In this study, (1T'-MoTe2 )x (Bi2 Te3 )y superlattice films with symmetry-mismatch were successfully fabricated via the molecular beam epitaxy. This enables to manipulate the interfacial band bending, thereby optimizing the corresponding thermoelectric performance. These results demonstrate that the increase of Te/Bi flux ratio (R) effectively tailored interfacial band bending, resulting in a reduction of the interfacial electric potential from ≈127 meV at R = 16 to ≈73 meV at R = 8. It is further verified that a smaller interfacial electric potential is more beneficial for optimizing the electronic transport properties of (1T'-MoTe2 )x (Bi2 Te3 )y . Especially, the (1T'-MoTe2 )1 (Bi2 Te3 )12 superlattice film displays the highest thermoelectric power factor of 2.72 mW m-1 K-2 among all films, due to the synergy of modulation doping, energy filtering, and the manipulation of band bending. Moreover, the lattice thermal conductivity of the superlattice films is significantly reduced. This work provides valuable guidance to manipulate the interfacial band bending and further enhance the thermoelectric performances of superlattice films.

6.
Sensors (Basel) ; 23(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139520

RESUMEN

The excretion care robot's (ECR) accurate recognition of transfer-assisted actions is crucial during its usage. However, transfer action recognition is a challenging task, especially since the differentiation of actions seriously affects its recognition speed, robustness, and generalization ability. We propose a novel approach for transfer action recognition assisted by a bidirectional long- and short-term memory (Bi-LSTM) network combined with a multi-head attention mechanism. Firstly, we utilize posture sensors to detect human movements and establish a lightweight three-dimensional (3D) model of the lower limbs. In particular, we adopt a discrete extended Kalman filter (DEKF) to improve the accuracy and foresight of pose solving. Then, we construct an action prediction model that incorporates a fused Bi-LSTM with Multi-head attention (MHA Bi-LSTM). The MHA extracts key information related to differentiated movements from different dimensions and assigns varying weights. Utilizing the Bi-LSTM network effectively combines past and future information to enhance the prediction results of differentiated actions. Finally, comparisons were made by three subjects in the proposed method and with two other time series based neural network models. The reliability of the MHA Bi-LSTM method was verified. These experimental results show that the introduced MHA Bi-LSTM model has a higher accuracy in predicting posture sensor-based excretory care actions. Our method provides a promising approach for handling transfer-assisted action individual differentiation in excretion care tasks.


Asunto(s)
Líquidos Corporales , Robótica , Humanos , Individualidad , Reproducibilidad de los Resultados , Extremidad Inferior
7.
J Am Chem Soc ; 144(3): 1445-1454, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35029977

RESUMEN

Bi2Si2Te6, a 2D compound, is a direct band gap semiconductor with an optical band gap of ∼0.25 eV, and is a promising thermoelectric material. Single-phase Bi2Si2Te6 is prepared by a scalable ball-milling and annealing process, and the highly densified polycrystalline samples are prepared by spark plasma sintering. Bi2Si2Te6 shows a p-type semiconductor transport behavior and exhibits an intrinsically low lattice thermal conductivity of ∼0.48 W m-1 K-1 (cross-plane) at 573 K. The first-principles density functional theory calculations indicate that such low lattice thermal conductivity is derived from the interactions between acoustic phonons and low-lying optical phonons, local vibrations of Bi, the low Debye temperature, and strong anharmonicity result from the unique 2D crystal structure and metavalent bonding of Bi2Si2Te6. The Bi2Si2Te6 exhibits an optimal figure of merit ZT of ∼0.51 at 623 K, which can be further enhanced by the substitution of Bi with Pb. Pb doping leads to a large increase in power factor S2σ, from ∼3.9 µW cm-1 K-2 of Bi2Si2Te6 to ∼8.0 µW cm-1 K-2 of Bi1.98Pb0.02Si2Te6 at 773 K, owing to the increase in carrier concentration. Moreover, Pb doping induces a further reduction in the lattice thermal conductivity to ∼0.38 W m-1 K-1 (cross-plane) at 623 K in Bi1.98Pb0.02Si2Te6, due to strengthened point defect (PbBi') scattering. The simultaneous optimization of the power factor and lattice thermal conductivity achieves a peak ZT of ∼0.90 at 723 K and a high average ZT of ∼0.66 at 400-773 K in Bi1.98Pb0.02Si2Te6.

8.
Small ; 18(46): e2204303, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36228102

RESUMEN

The sharp reduction in size and increase in power density of next-generation integrated circuits lead to electromagnetic interference and heat failure being a key roadblock for their widespread applications in polymer-based electronic packaging materials. This work demonstrates a multifunctional epoxy-based composite (MDCF@LDH/EP) with high electromagnetic wave (EMW) absorption, thermal conductivity, and flame retardancy performance. In which, the synergistic effect of porous structure and heterointerface promotes the multiple reflection and absorption, and dielectric loss of EMW. A low reflection loss of -57.77 dB, and an effective absorption bandwidth of 7.20 GHz are achieved under the fillings of only 10 wt%. Meanwhile, a 241.4% enhanced thermal conductivity of EP is due to the high continuous 3D melamine-derived carbon foams (MDCF), which provides a broad path for the transport of phonons. In addition, MDCF@LDH/EP composite exhibits high thermal stability and flame retardancy, thanks to the physical barrier effect of MDCF@LDH combined with the high temperature cooling properties of NiAl-LDH-CO3 2- . Compared with pure epoxy resin, the peak heat release rate and the total heat release rate are reduced by 19.4% and 30.7%, respectively. Such an excellent comprehensive performance enables MDCF@LDH/EP to a promising electronic packaging material.

9.
Sensors (Basel) ; 22(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35271152

RESUMEN

It is a considerable challenge to realize the accurate, continuous detection of handgrip strength due to its complexity and uncertainty. To address this issue, a novel grip strength estimation method oriented toward the multi-wrist angle based on the development of a flexible deformation sensor is proposed. The flexible deformation sensor consists of a foaming sponge, a Hall sensor, an LED, and photoresistors (PRs), which can measure the deformation of muscles with grip strength. When the external deformation squeezes the foaming sponge, its density and light intensity change, which is detected by a light-sensitive resistor. The light-sensitive resistor extended to the internal foaming sponge with illuminance complies with the extrusion of muscle deformation to enable relative muscle deformation measurement. Furthermore, to achieve the speed, accuracy, and continuous detection of grip strength with different wrist angles, a new grip strength-arm muscle model is adopted and a one-dimensional convolutional neural network based on the dynamic window is proposed to recognize wrist joints. Finally, all the experimental results demonstrate that our proposed flexible deformation sensor can accurately detect the muscle deformation of the arm, and the designed muscle model and convolutional neural network can continuously predict hand grip at different wrist angles in real-time.


Asunto(s)
Fuerza de la Mano , Muñeca , Fuerza de la Mano/fisiología , Músculos/fisiología , Extremidad Superior , Muñeca/fisiología , Articulación de la Muñeca/fisiología
10.
J Am Chem Soc ; 143(34): 13990-13998, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34410126

RESUMEN

The reaction of MnTe with AgSbTe2 in an equimolar ratio (ATMS) provides a new semiconductor, AgMnSbTe3. AgMnSbTe3 crystallizes in an average rock-salt NaCl structure with Ag, Mn, and Sb cations statistically occupying the Na sites. AgMnSbTe3 is a p-type semiconductor with a narrow optical band gap of ∼0.36 eV. A pair distribution function analysis indicates that local distortions are associated with the location of the Ag atoms in the lattice. Density functional theory calculations suggest a specific electronic band structure with multi-peak valence band maxima prone to energy convergence. In addition, Ag2Te nanograins precipitate at grain boundaries of AgMnSbTe3. The energy offset of the valence band edge between AgMnSbTe3 and Ag2Te is ∼0.05 eV, which implies that Ag2Te precipitates exhibit a negligible effect on the hole transmission. As a result, ATMS exhibits a high power factor of ∼12.2 µW cm-1 K-2 at 823 K, ultralow lattice thermal conductivity of ∼0.34 W m-1 K-1 (823 K), high peak ZT of ∼1.46 at 823 K, and high average ZT of ∼0.87 in the temperature range of 400-823 K.

11.
J Nanosci Nanotechnol ; 13(2): 787-92, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23646516

RESUMEN

CdSe nanocrystal sensitized TiO2 nanosheet array heterostructure films were fabricated by a two-step method. Firstly, a single crystalline anatase TiO2 tetragonal nanosheet-array film on a transparent conductive fluorine-doped tin oxide (FTO) substrate was successfully prepared by hydrothermal method. Then, CdSe nanocrystalline sensitizers were deposited on the TiO2 nanosheet array by CBD method. The products were characterized with XRD, SEM, TEM and UV-vis absorption spectroscopy. The effect of the CdSe nanocrystal deposition time and the length of the TiO2 sheet on the photovoltaic performance of the resulting CdSe/TiO2 nanosheet array electrodes were also investigated. In comparison with the non-sensitized TiO2 nanosheet array, the photocurrent of CdSe sensitized TiO2 nanosheet has a great enhancement, which gives some insight to the fundamental mechanism of the performance improvement.

12.
Front Neurosci ; 17: 1291682, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38099199

RESUMEN

Faced with the increasingly severe global aging population with fewer children, the research, development, and application of elderly-care robots are expected to provide some technical means to solve the problems of elderly care, disability and semi-disability nursing, and rehabilitation. Elderly-care robots involve biomechanics, computer science, automatic control, ethics, and other fields of knowledge, which is one of the most challenging and most concerned research fields of robotics. Unlike other robots, elderly-care robots work for the frail elderly. There is information exchange and energy exchange between people and robots, and the safe human-robot interaction methods are the research core and key technology. The states of the art of elderly-care robots and their various nursing modes and safe interaction methods are introduced and discussed in this paper. To conclude, considering the disparity between current elderly care robots and their anticipated objectives, we offer a comprehensive overview of the critical technologies and research trends that impact and enhance the feasibility and acceptance of elderly care robots. These areas encompass the collaborative assistance of diverse assistive robots, the establishment of a novel smart home care model for elderly individuals using sensor networks, the optimization of robot design for improved flexibility, and the enhancement of robot acceptability.

13.
ACS Appl Mater Interfaces ; 15(42): 49259-49269, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37830755

RESUMEN

The thermoelectric performance of n-type Bi2Te3 needs further enhancement to match that of its p-type Bi2Te3 counterpart and should be considered for competitive applications. Combining Cu/Cl and multiscale additives (AgBiSe2) presents a suitable route for such enhancement. This is evidence of the enhanced thermoelectric performance of Bi1.995Cu0.005Te2.69Se0.33Cl0.03. Moreover, by incorporating 0.65 wt % AgBiSe2 (ABS) into Bi1.995Cu0.005Te2.69Se0.33Cl0.03, we further reduce its lattice thermal conductivity to ∼0.28 W m-1 K-1 at 353 K owing to the extra phonon scattering of multiscale ABS. Additionally, the Seebeck coefficient enhances (-183.89 µV K-1 at 353 K) owing to the matrix's reduced carrier concentration caused by ABS. As a result, we achieve a high ZT of ∼1.25 (at 353 K) and a high ZTave of ∼1.12 at 300-433 K for Bi1.995Cu0.005Te2.69Se0.33Cl0.03 + 0.65 wt % ABS. This work provides a promising strategy for enhancing the thermoelectric performance of n-type Bi2Te3 through Cu/Cl doping and ABS incorporation.

14.
ACS Appl Mater Interfaces ; 14(6): 7962-7971, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35119820

RESUMEN

Tin oxide (SnO2) has been commonly used as an electron transport layer (ETL) in planar perovskite solar cells (p-PSCs) because it can be prepared by a low-temperature solution-processed method. However, the device performance has been restricted due to the limited electrical performance of SnO2 and its mismatched energy level alignment with the perovskite absorber. Considering these problems, sodium tungstate (Na2WO4) has been employed to modify the SnO2 ETL. The conduction band minimum of SnO2 increases and the defects at the ETL/perovskite interface decrease by the modification of the SnO2 ETL with Na2WO4, thus reducing the energy barrier between the ETL and perovskite. In addition, the electron extraction ability has been enhanced and the interface recombination between the ETL and perovskite has also been inhibited. As a result, the photovoltaic performance of p-PSCs based on the modified ETL has been improved, and a champion power conversion efficiency of 21.16% has been achieved compared with the control device of 17.30% with an open circuit voltage increased from 1.075 to 1.162 V.

15.
Comput Intell Neurosci ; 2022: 3033920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341193

RESUMEN

Aiming at promptly and accurately detecting falls and drag-to gaits induced by asynchronous human-robot movement speed during assisted walking, a noncontact interactive approach with generality, compliance and safety is proposed in this paper, and is applied to a wheeled walking aid robot. Firstly, the structure and the functions of the wheeled walking aid robot, including gait rehabilitation robot (GRR) and walking aid robot (WAR) are illustrated, and the characteristic futures of falls and the drag-to gait are shown by experiments. To obtain gait information, a multichannel proximity sensor array is developed, and a two-dimensional gait information detection system is established by combining four proximity sensors groups which are installed in the robot chassis. Additionally, a node-iterative fuzzy Petri net algorithm for abnormal gait recognition is proposed by generating the network trigger mechanism using the fuzzy membership function. It integrates the walking intention direction vector by taking gait deviation, frequency, and torso angle as input parameters of the system. Finally, to improve the compliance of the robot during human-robot interaction, a PID_SC controller is designed by integrating the gait speed compensation, which enables the WAR to track human gait closely. Abnormal gait recognition and assisted walking experiments are carried out respectively. Experimental results show that the proposed algorithm can accurately identify abnormal gaits of different groups of users with different walking habits, and the recognition rate of abnormal gait reaches 91.2%. Results also show that the developed method can guarantee safety in human robot interaction because of user gate follow-up accuracy and compliant movements. The noncontact interactive approach can be applied to robots with similar structure for usage in walking assistance and gait rehabilitation.


Asunto(s)
Robótica , Algoritmos , Marcha , Humanos , Robótica/métodos , Caminata
16.
ACS Appl Mater Interfaces ; 14(49): 54803-54811, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36459084

RESUMEN

Bismuth telluride-based (Bi2Te3) alloys have long been considered the best thermoelectric (TE) materials at room temperature. However, the n-type Bi2Te3 alloys always exhibit poor thermoelectric performance than their p-type counterpart, which severely limits the energy conversion efficiency of thermoelectric devices. Here, we demonstrate that incorporating AgBiSe2 can concurrently regulate the electrical and thermal transport properties as well as improve the mechanical performance of n-type Bi2Te2.69Se0.33Cl0.03 for high thermoelectric performance. Among these, AgBiSe2 effectively enhanced the Seebeck coefficients of n-type Bi2Te2.69Se0.33Cl0.03 due to the reduced carrier concentration and reduced the thermal conductivity of n-type Bi2Te2.69Se0.33Cl0.03 owing to the enhanced phonon scattering by AgBiSe2 as well as its low thermal conductivity nature. Consequently, the simultaneous optimization of electrical and thermal transport properties enables us to achieve a maximum ZT of ∼1.21 (at ∼353 K) and an average ZTave of ∼1.07 (300-433 K) for 3.5 wt % AgBiSe2-incorporated Bi2Te2.69Se0.33Cl0.03, which are ∼25.62 and ∼23.36% larger than those of Bi2Te2.69Se0.33Cl0.03, respectively. This work proves that the incorporation of AgBiSe2 is an efficient way to improve the thermoelectric performance of bismuth telluride-based materials.

17.
ACS Appl Mater Interfaces ; 14(32): 37204-37212, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35917399

RESUMEN

An increasing number of studies have reported producing composite structures by combining thermoelectric and functional materials. However, combining energy filtering and ferroelectric polarization to enhance the dimensionless figure of merit thermoelectric ZT remains elusive. Here we report a composite that contains nanostructured BaTiO3 embedded in a Bi0.5Sb1.5Te3 matrix. We show that ferroelectric BaTiO3 particles are evenly composited with Bi0.5Sb1.5Te3 grains reducing the concentration of free charge carriers with increasing BaTiO3 content. Additionally, as a result of the energy-filtering effect and ferroelectric polarization, the Seebeck coefficient was improved by ∼10% with a ∼10% improvement in power factors. The BaTiO3 phase can effectively scatters phonons reducing lattice thermal conductivity κl (0.5 W m-1 K-1) and increasing ZT to 1.31 at 363 K in Bi0.5Sb1.5Te3 composites with 2 vol % BaTiO3 content giving an improvement of ∼25% over pure Bi0.5Sb1.5Te3. Our work indicates that the introduction of ferroelectric nanoparticles is an effective method for optimizing the ZT of Bi0.5Sb1.5Te3-based thermoelectric materials.

18.
J Colloid Interface Sci ; 628(Pt A): 696-704, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35944300

RESUMEN

The severe non-radiative recombination loss caused by SnO2/perovskite interface defects greatly hinders the further improvement of the performance and stability of flexible perovskite solar cells (PSCs). Herein, a series of halides KM (M = F, Cl, Br, I) were inserted as interface layers to modulate the SnO2/perovskite interface. Both experimental and theoretical calculation demonstrated that F- exhibited stronger interface coupling effect between the SnO2 and perovskite than other halide ions (Cl-, Br-, I-). The F- had unique effects in effectively depressing SnO2/perovskite interface defects ascribed to the simultaneous formation of SnF bonds and hydrogen bonds, resulting in reduced non-radiative recombination and improved interfacial contact. In consequence, the champion KF-modified flexible and rigid PSCs delivered outstanding PCE of 18.16 % and 21.36 %, accompanied by the enhanced VOC of 1.14 V and 1.16 V, respectively. Meanwhile, the stability of flexible PSCs was significantly ameliorated after KF modification, and about 84 % of the original efficiency could be retained even after 3000 bending cycles. This work provides a facile and efficient strategy for interface modulation to achieve high-performance and stable flexible PSCs.

19.
ACS Appl Mater Interfaces ; 14(7): 9192-9202, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35133800

RESUMEN

A nanostructure has a significant role in enhancing the power factor and preventing the heat propagation for thermoelectric materials. Herein, we propose a unique segregated and percolated (SP) microphase-separated structure to enhance the thermoelectric performance of SnTe. The SP structure is composed of insoluble SnTe and AgCuTe, in which AgCuTe with ultralow lattice thermal conductivity undergoes a solid-phase welding during a spark plasma sintering process and forms continuous percolated layers at the interface of isolated SnTe. The SP structure achieved a simultaneous scattering for low energy holes due to the energy offset of the valence band maximum between SnTe and AgCuTe and for phonons due to the noncoherent interfaces between SnTe and AgCuTe, resulting in a high Seebeck coefficient of ∼219.4 µV/K and a low lattice thermal conductivity of ∼1.1 W m-1 K-1 at 800 K for (SnTe)0.55(AgCuTe)0.45. The thermoelectric performance was further enhanced by means of the cosubstitution of In and Mn for Sn in the SnTe lattice, inducing resonance levels and extra phonon scattering. As a result, the SP structure combined with In/Mn codoping enable us to achieve a low lattice thermal conductivity of 0.47 W m-1 K-1, a peak ZT of ∼1.45 at 800 K, and a high average ZT of ∼0.73 (400-800 K) for (Sn0.98In0.01Mn0.01Te)0.75(AgCuTe)0.25.

20.
ACS Appl Mater Interfaces ; 13(17): 20034-20042, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33848134

RESUMEN

Inorganic perovskite CsPbBr3 has broad application prospects in photovoltaic windows, tandem cells, and other fields due to its intrinsic semitransparency, excellent photoelectric properties, and stability. In this work, a high-quality semitransparent CsPbBr3 film was prepared by a sequential vacuum evaporation deposition method without high-temperature annealing and successfully used as the active layer of flexible perovskite solar cells (F-PSCs) for the first time, achieving a power conversion efficiency (PCE) of 5.00%. By introducing an energy-level buffer layer of Cu2O between CsPbBr3 and Spiro-OMeTAD, the champion PCE has been further improved to 5.67% owing to the reduction of electron-hole recombination and enhanced charge extraction. The optimized devices present higher stability, which can maintain more than 95% of the initial efficiency even after continuous heating at 85 °C for 240 h. Moreover, the F-PSCs also exhibit excellent mechanical durability, and 90% of the original PCE can be retained after 1000 bending cycles at a curvature radius of 3 mm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA