Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2312206, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483011

RESUMEN

Incorporating dilute doping and controlled synthesis provides a means to modulate the microstructure, defect density, and transport properties. Transmission electron microscopy (TEM) and geometric phase analysis (GPA) have revealed that hot-pressing can increase defect density, which redistributes strain and helps prevent unwanted Ge precipitates formation. An alloy of GeTe with a minute amount of indium added has shown remarkable TE properties compared to its undoped counterpart. Specifically, it achieves a maximum figure-of-merit zT of 1.3 at 683 K and an exceptional TE conversion efficiency of 2.83% at a hot-side temperature of 723 K. Significant zT and conversion efficiency improvements are mainly due to domain density engineering facilitated by an effective hot-pressing technique applied to lightly doped GeTe. The In-GeTe alloy exhibits superior TE properties and demonstrates notable stability under significant thermal gradients, highlighting its promise for use in mid-temperature TE energy generation systems.

2.
Macromol Biosci ; 15(12): 1755-63, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26287505

RESUMEN

This study aims to develop bioreducible polyethylenimine (rPEI)/siRNA polyplexes with high stability, high transfection efficiency, and low cytotoxicity for efficient cytoplasmic siRNA delivery. rPEI successfully incorporated siRNA into stable and compact nanocomplexes, and the disulfide linkages in rPEI/siRNA were cleaved under reductive environments, resulting in efficient intracellular translocation and siRNA release. In this study, receptor for advanced glycation end-products (RAGE) was selected as a therapeutic target gene because it is associated with inflammatory responses in ischemia/reperfusion injury. rPEI/siRAGE exhibited high target gene silencing and low cytotoxicity in cardiomyocytes, and the treatment of rPEI/siRAGE reduced the myocardial infarction size.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética/métodos , Miocardio/metabolismo , Nanopartículas , ARN Interferente Pequeño , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Animales , Citoplasma/metabolismo , Masculino , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Receptor para Productos Finales de Glicación Avanzada/biosíntesis
3.
Genes ; 9(5): 253, 2018.
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib15110

RESUMEN

Atypical enteropathogenic Escherichia coli are capable to form biofilm on biotic and abiotic surfaces, regardless of the adherence pattern displayed. Several E. coli mechanisms are regulated by Quorum sensing (QS), including virulence factors and biofilm formation. Quorum sensing is a signaling system that confers bacteria with the ability to respond to chemical molecules known as autoinducers. Suppressor of division inhibitor (SdiA) is a QS receptor present in atypical enteropathogenic E. coli (aEPEC) that detects acyl homoserine lactone (AHL) type autoinducers. However, these bacteria do not encode an AHL synthase, but they are capable of sensing AHL molecules produced by other species, establishing an inter-species bacterial communication. In this study, we performed experiments to evaluate pellicle, ring-like structure and biofilm formation on wild type, sdiA mutants and complemented strains. We also evaluated the transcription of genes involved in different stages of biofilm formation, such as bcsA, csgA, csgD, fliC and fimA. The sdiA mutants were capable of forming thicker biofilm structures and showed increased motility when compared to wild type and complemented strains. Moreover, they also showed denser pellicles and ring-like structures. Quantitative real-time PCR (qRT-PCR) analysis demonstrated increased csgA, csgD and fliC transcription on mutant strains. Biofilm formation, as well as csgD, csgA and fimA transcription decreased on wild type strains by the addition of AHL. These results indicate that SdiA participates on the regulation of these phenotypes in aEPEC and that AHL addition enhances the repressor effect of this receptor on the transcription of biofilm and motility related genes.

4.
Genes, v. 9, n. 5, 253, maio 2018
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-2472

RESUMEN

Atypical enteropathogenic Escherichia coli are capable to form biofilm on biotic and abiotic surfaces, regardless of the adherence pattern displayed. Several E. coli mechanisms are regulated by Quorum sensing (QS), including virulence factors and biofilm formation. Quorum sensing is a signaling system that confers bacteria with the ability to respond to chemical molecules known as autoinducers. Suppressor of division inhibitor (SdiA) is a QS receptor present in atypical enteropathogenic E. coli (aEPEC) that detects acyl homoserine lactone (AHL) type autoinducers. However, these bacteria do not encode an AHL synthase, but they are capable of sensing AHL molecules produced by other species, establishing an inter-species bacterial communication. In this study, we performed experiments to evaluate pellicle, ring-like structure and biofilm formation on wild type, sdiA mutants and complemented strains. We also evaluated the transcription of genes involved in different stages of biofilm formation, such as bcsA, csgA, csgD, fliC and fimA. The sdiA mutants were capable of forming thicker biofilm structures and showed increased motility when compared to wild type and complemented strains. Moreover, they also showed denser pellicles and ring-like structures. Quantitative real-time PCR (qRT-PCR) analysis demonstrated increased csgA, csgD and fliC transcription on mutant strains. Biofilm formation, as well as csgD, csgA and fimA transcription decreased on wild type strains by the addition of AHL. These results indicate that SdiA participates on the regulation of these phenotypes in aEPEC and that AHL addition enhances the repressor effect of this receptor on the transcription of biofilm and motility related genes.

5.
Braz J Med Biol Res ; 47(6): p.438-44, 2014.
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib9629
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA