RESUMEN
Actinomycetes are essential sources of numerous bioactive secondary metabolites with diverse chemical and bioactive properties. Lichen ecosystems have piqued the interest of the research community due to their distinct characteristics. Lichen is a symbiont of fungi and algae or cyanobacteria. This review focuses on the novel taxa and diverse bioactive secondary metabolites identified between 1995 and 2022 from cultivable actinomycetota associated with lichens. A total of 25 novel actinomycetota species were reported following studies of lichens. The chemical structures and biological activities of 114 compounds derived from the lichen-associated actinomycetota are also summarized. These secondary metabolites were classified into aromatic amides and amines, diketopiperazines, furanones, indole, isoflavonoids, linear esters and macrolides, peptides, phenolic derivatives, pyridine derivatives, pyrrole derivatives, quinones, and sterols. Their biological activities included anti-inflammatory, antimicrobial, anticancer, cytotoxic, and enzyme-inhibitory actions. In addition, the biosynthetic pathways of several potent bioactive compounds are summarized. Thus, lichen actinomycetes demonstrate exceptional abilities in the discovery of new drug candidates.
Asunto(s)
Antiinfecciosos , Líquenes , Líquenes/química , Ecosistema , Hongos , Antibacterianos/metabolismo , Antiinfecciosos/farmacologíaRESUMEN
Diketopiperazines are potential structures with extensive biological functions, which have attracted much attention of natural product researchers for a long time. These compounds possess a stable six-membered ring, which is an important pharmacophore. The marine organisms have especially been proven to be a wide source for discovering diketopiperazine derivatives. In recent years, more and more interesting bioactive diketopiperazines had been found from various marine habitats. This review article is focused on the new 2,5-diketopiperazines derived from marine organisms (sponges and microorganisms) reported from the secondary half-year of 2014 to the first half of the year of 2021. We will comment their chemical structures, biological activities and sources. The objective is to assess the merit of these compounds for further study in the field of drug discovery.
Asunto(s)
Organismos Acuáticos/química , Dicetopiperazinas/química , Humanos , Relación Estructura-ActividadRESUMEN
Simultaneous localization and mapping (SLAM) has a wide range for applications in mobile robotics. Lightweight and inexpensive vision sensors have been widely used for localization in GPS-denied or weak GPS environments. Mobile robots not only estimate their pose, but also correct their position according to the environment, so a proper mathematical model is required to obtain the state of robots in their circumstances. Usually, filter-based SLAM/VO regards the model as a Gaussian distribution in the mapping thread, which deals with the complicated relationship between mean and covariance. The covariance in SLAM or VO represents the uncertainty of map points. Therefore, the methods, such as probability theory and information theory play a significant role in estimating the uncertainty. In this paper, we combine information theory with classical visual odometry (SVO) and take Jensen-Shannon divergence (JS divergence) instead of Kullback-Leibler divergence (KL divergence) to estimate the uncertainty of depth. A more suitable methodology for SVO is that explores to improve the accuracy and robustness of mobile devices in unknown environments. Meanwhile, this paper aims to efficiently utilize small portability for location and provide a priori knowledge of the latter application scenario. Therefore, combined with SVO, JS divergence is implemented, which has been realized. It not only has the property of accurate distinction of outliers, but also converges the inliers quickly. Simultaneously, the results show, under the same computational simulation, that SVO combined with JS divergence can more accurately locate its state in the environment than the combination with KL divergence.
RESUMEN
Secondary metabolites produced by the ascomycetes have attracted wide attention from researchers. Their diverse chemical structures and rich biological activities are essential in medicine, food, and agriculture. The monophyletic Nigrospora genus belongs to the Apiosporaceae family and is a rich source of novel and diverse bioactive metabolites. It occurs as a common plant pathogen, endophyte, and saprobe distributed in many ecosystems worldwide. Researchers have focused on discovering new species and secondary metabolites in the past ten years. The host diseases caused by Nigrospora species are also investigated. This review describes 50 references from Web of Science, CNKI, Google Scholar and PubMed related to the secondary metabolites from Nigrospora. Here, a total of 231 compounds isolated from five known species and 21 unidentified species of Nigrospora from January 1991 to June 2022 are summarized. Their structures are attributed to polyketides, terpenoids, steroids, N-containing compounds, and fatty acids. Meanwhile, 77 metabolites exhibited various biological activities like cytotoxic, antifungal, antibacterial, antiviral, antioxidant, anti-inflammatory, antileukemic, antimalarial, phytotoxic, enzyme inhibitory, etc. Notably, this review presents a comprehensive literature survey focusing on the chemistry and bioactivity of secondary metabolites from Nigrospora.
Asunto(s)
Ascomicetos , Policétidos , Antifúngicos/farmacología , Ecosistema , Estructura MolecularRESUMEN
The investigation of the metabolites from the endophytic fungus Xylaria sp. YM 311647 in solid fermentation resulted in the isolation of six undescribed compounds, namely xylarioxides A-F, respectively. These included one eremophilane sesquiterpene, three guaiane sesquiterpene glycosides, and two ergostane glycosides. The structures of the compounds were determined by extensive analyses of spectroscopic data, including 1D and 2D NMR, as well as HRESIMS data. The stereochemistry of xylarioxide A was confirmed by X-ray crystallographic analysis. All of the isolated compounds were assayed for their antifungal activities against seven phytopathogenic fungi and two human pathogenic fungi. Among them, xylarioxides A, E and F showed potent activities against the tested phytopathogens. Particularly, xylarioxide E exhibited the highest activity against Gibberella saubinetii, Curvularia lunata, and Colletotrichum gloeosporioides with MIC values of 4, 4, and 8 µg/mL, respectively, which were comparable to the positive control of nystatin. Interestingly, guaiane sesquiterpene glycosides have been rarely reported from fungal sources. Additionally, xylarioxide E represented an unusual naturally occurring 3,4-seco-steroidal glycoside with a seven-membered lactone in ring A.
Asunto(s)
Azadirachta , Sesquiterpenos , Xylariales , Ergosterol/análogos & derivados , Glicósidos/farmacología , Estructura Molecular , Sesquiterpenos/química , Sesquiterpenos de Guayano/química , Xylariales/químicaRESUMEN
In this data article, we present the FT-IR and PXRD data of the lanthanide complexes constructed by 4-iodo-3-methylbenzoic acid (IMBA) and 4,7-dimethyl-1,10-phenanthroline (dmp). Detailed structure analysis, luminescence and sensing properties were discussed in our previous study, "Highly Luminescent Lanthanide Complexes as Bifunctional Sensor for Et2O and Fe2+" (Zhao et al., 2018). Also, the data include the bond lengths and angles of [Ln2(IMBA)6(dmp)2] (Ln=Eu3+, 1a; Ln=Gd3+, 1b; Ln=Tb3+, 1c).
RESUMEN
In this data article, we present the structural and PXRD data of the lanthanide complexes constructed by bis-tridentate ligand tppz (2,3,5,6-tetra-2-pyridinylpyrazine). Detailed structure, luminescence and sensing properties were discussed in "highly luminescent lanthanide complexes constructed by bis-tridentate ligand and as sensor for Et2O" (Zheng et al., 2018). The data includes the structure of Tb-complex, PXRD of Tb-complex, and also detailed structure information listed in Table 1, Table 2, Table 3.