Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Foodborne Pathog Dis ; 20(3): 100-109, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36893330

RESUMEN

High prevalence of livestock-associated methicillin-susceptible and -resistant Staphylococcus aureus (LA-MSSA and LA-MRSA, respectively) in livestock farms, particularly pig farms, is an increasingly serious threat to food safety and public health. In this study, 173 S. aureus (84 MRSA and 89 MSSA) isolates from healthy pigs, farm environments, and farm workers in Korea were examined to determine the (1) genetic diversity of S. aureus isolates (sequence type [ST], spa, and agr types), (2) staphylococcal cassette chromosome mec (SCCmec) types of MRSA isolates, and (3) multidrug resistance (MDR) phenotypes of MRSA and MSSA isolates. Clonal complex 398 (CC398) genotypes of MRSA and MSSA isolates, particularly CC398-spa type t571-agr I lineages, displaying MDR phenotypes were highly prevalent in pig farms. High prevalence of CC398-t571 MRSA and MSSA was more frequently associated with weaning piglets and growing pigs. Moreover, the same clonal lineages of S. aureus isolates colonized both pigs and farm workers, suggesting the transmission of antimicrobial-resistant CC398 MRSA and MSSA between pigs and humans in the pig farms. Furthermore, two dominant SCCmec types, SCCmec V and SCCmec IX, were identified in CC398 MRSA isolates colonizing healthy pigs. To the best of our knowledge, this is the first report of a CC398 LA-MRSA isolate carrying SCCmec IX in Korea. Collectively, these results suggest widespread distribution of the CC398 lineage among MRSA and MSSA isolates in pigs, farm environments, and farm workers in Korea.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Humanos , Porcinos , Staphylococcus aureus , Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Granjas , Prevalencia , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/veterinaria , Resistencia a Múltiples Medicamentos , Cromosomas , Antibacterianos/farmacología
2.
Infect Immun ; 89(10): e0034721, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34227840

RESUMEN

GraS is a membrane sensor in Staphylococcus aureus that induces mprF and dltABCD expression to alter the surface positive charge upon exposure to cationic human defense peptides (HDPs). The sensing domain of GraS likely resides in the 9-residue extracellular loop (EL). In this study, we assessed a hospital-acquired methicillin-resistant S. aureus (HA-MRSA) strain (COL) for the specific role of two distinct EL mutations: F38G (bulk) and D/35/37/41K (charged inversion). Activation of mprF by polymyxin B (PMB) was reduced in the D35/37/41K mutant versus the D35/37/41G mutant, correlating with reduced surface positive charge; in contrast, these effects were less prominent in the F38G mutant but still lower than those in the parent. These data indicated that both electrostatic charge and steric bulk of the EL of GraS influence induction of genes impacting HDP resistance. Using mprF expression as a readout, we confirmed GraS signaling was pH dependent, increasing as pH was lowered (from pH 7.5 down to pH 5.5). In contrast to PMB activation, reduction of mprF was comparable at pH 5.5 between the P38G and D35/37/41K point mutants, indicating a mechanistic divergence between GraS activation by acidic pH versus cationic peptides. Survival assays in human blood and purified polymorphonuclear leukocytes (PMNs) revealed lower survival of the D35/37/41K mutant versus the F38G mutant, with both being lower than that of the parent. Virulence studies in the rabbit endocarditis model mirrored whole blood and PMN killing assay data described above. Collectively, these data confirmed the importance of specific residues within the EL of GraS in conferring essential bacterial responses for MRSA survival in infections.


Asunto(s)
Proteínas Bacterianas/genética , Infecciones Cardiovasculares/metabolismo , Infecciones Cardiovasculares/microbiología , Farmacorresistencia Bacteriana/genética , Staphylococcus aureus Resistente a Meticilina/genética , Neutrófilos/metabolismo , Infecciones Estafilocócicas/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Endocarditis/metabolismo , Endocarditis/microbiología , Femenino , Regulación Bacteriana de la Expresión Génica/genética , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Viabilidad Microbiana/genética , Neutrófilos/microbiología , Conejos , Infecciones Estafilocócicas/microbiología
3.
J Ren Nutr ; 31(6): 569-578, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33766469

RESUMEN

OBJECTIVE: Both obesity and being underweight are risk factors for adverse outcomes in chronic kidney disease (CKD) patients. However, the effects of longitudinal weight changes on patients with predialysis CKD have not yet been studied. In this study, we analyzed the effects of weight change over time on the adverse outcomes in predialysis CKD population. METHODS: Longitudinal data from a multicenter prospective cohort study (KNOW-CKD) were analyzed. In a total of 2,022 patients, the percent weight change per year were calculated using regression analysis and the study subjects were classified into five categories: group 1, ≤ -5%/year; group 2, -5< to ≤ -2.5%/year; group 3, -2.5< to <2.5%/year; group 4, 2.5≤ < 5%/year; and group 5, ≥5%/year. The incidences of end-stage renal disease (ESRD) and the composite outcome of cardiovascular disease (CVD) and death were calculated in each group and compared to group 3 as reference. RESULTS: During a median 4.4 years of follow-up, 414 ESRD, and 188 composite of CVD and mortality events occurred. Both weight gain and loss were independent risk factors for adverse outcomes. There was a U-shaped correlation between the degree of longitudinal weight change and ESRD (hazard ratio 3.61, 2.15, 1.86 and 3.66, for group 1, 2, 4 and 5, respectively) and composite of CVD and death (hazard ratio 2.92, 2.15, 1.73 and 2.54, respectively), when compared to the reference group 3. The U-shape correlation was most prominent in the subgroup of estimated glomerular filtration rate <45 mL/min/1.73 m2. CONCLUSION: Both rapid weight gain and weight loss are associated with high risk of adverse outcomes, particularly in the advanced CKD.


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Progresión de la Enfermedad , Tasa de Filtración Glomerular , Humanos , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/terapia , Estudios Prospectivos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/epidemiología , Factores de Riesgo
4.
Foodborne Pathog Dis ; 18(6): 378-387, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33656917

RESUMEN

The frequent occurrence of sequence-type 398 (ST398) livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in pigs has become a major public health concern owing to the increased zoonotic potential of the pathogen. Recently, a novel oxazolidinone resistance gene, chloramphenicol-florfenicol resistant (cfr), conferring multiresistance phenotypes to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A (PhLOPSA), has been found among ST398 LA-MRSA strains isolated from pigs. In this study, we report the first in silico genome analysis of a linezolid-resistant ST398 LA-MRSA strain, designated PJFA-521M, recovered from a pig in Korea. Genomic analyses revealed that the presence of the cfr gene was responsible for the observed linezolid resistance in the PJFA-521M strain. Moreover, newer antimicrobial resistance genes, such as the dfrG, aadE, spw, lsa(E), lnu(B), and fexA genes, were found in the PJFA-521M strain. In addition to the genetic elements for antimicrobial resistance, the carriage of various virulence genes for adherence, invasion, and immunomodulation was identified in the genome, especially within several mobile genetic elements (MGEs). The presence of multiple antimicrobial resistance genes and virulence genes on MGEs in the genome of a linezolid-resistant ST398 LA-MRSA should raise awareness regarding the use of other antimicrobial agents in pig farms and may also provide selective pressure for the prevalence of the cfr gene and the associated multidrug-resistant phenotype.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Genoma Bacteriano/efectos de los fármacos , Linezolid/farmacología , Staphylococcus aureus Resistente a Meticilina/genética , Animales , Ganado , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , República de Corea , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/veterinaria , Sus scrofa/microbiología , Porcinos , Enfermedades de los Porcinos/microbiología , Factores de Virulencia/genética
5.
Nutr Neurosci ; 22(11): 760-767, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29495953

RESUMEN

The alpha-glucosidase inhibitor voglibose (VO) was recently reported to have a protective effect against weight gain as well as affect various metabolic changes related to food intake and gut-brain signaling. We hypothesized that VO prevents weight gain by altering neurometabolome profiles in the hypothalamus to reduce food intake. To test this hypothesis, we assessed metabolite profiles in the hypothalamus of standard diet- or high-fat (HF) diet-fed mice in the absence or presence of VO. In total, 29 male C57BL/6 mice were divided into 3 groups: (1) lean control, (2) HF, and (3) HF + VO. Vehicle or VO was administered for 12 weeks. The results showed that there were alterations in levels of metabolites across several metabolic pathways in the hypothalamus. VO treatment increased levels of many amino acids including arginine, glutamine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine in the hypothalamus. In addition, levels of 2-hydroxy-2-methyl-butyric acid in the hypothalamus were significantly increased after VO administration in HF diet-fed mice. Among lipid metabolites, levels of fatty acids were higher in the hypothalamus of VO-treated mice than in that of HF diet-fed mice. In terms of the energy status, the ATP/ADP ratio was higher in the hypothalamus of VO-treated mice (P < 0.001), thereby indicating an energy surplus. In conclusion, VO supplementation altered metabolite profiles in the hypothalamus to enhance catabolism, which is possibly responsible for the hypophagic effect of VO in HF diet-fed mice.


Asunto(s)
Inhibidores de Glicósido Hidrolasas/administración & dosificación , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Inositol/análogos & derivados , Metaboloma/efectos de los fármacos , Aminoácidos/análisis , Animales , Dieta Alta en Grasa , Ingestión de Alimentos/efectos de los fármacos , Inositol/administración & dosificación , Masculino , Metabolómica , Ratones Endogámicos C57BL
6.
Int J Mol Sci ; 20(17)2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461911

RESUMEN

The purpose of this study is to investigate whether nicotinamide riboside (NR) can improve inflammation and cognitive function in diabetic mice. ICR male mice were fed for 14 weeks with either high-fat chow diet (HF, 60% kcal fat) or standard chow diet (CON, 10% kcal fat). HF, streptozotocin, and nicotinamide were used to induce hyperglycemia. NR or vehicle was delivered via stomach gavage for six weeks. Oral glucose tolerance test, Y-maze test, and nest construction test were conducted before and after the NR treatment period. NR treatment induced down-regulation of NLRP3, ASC, and caspase-1. NR reduced IL-1 expression significantly by 50% in whole brains of hyperglycemic mice. Other inflammatory markers including TNF-α and IL-6 were also attenuated by NR. Brain expression of amyloid-ß precursor protein and presenilin 1 were reduced by NR. In addition, NR induced significant reduction of amyloid-ß in whole brains of diabetic mice. NR treatment restored hyperglycemia-induced increases in brain karyopyknosis to the levels of controls. Nest construction test showed that NR improved hippocampus functions. Spatial recognition memory and locomotor activity were also improved by NR supplementation. These findings suggest that NR may be useful for treating cognitive impairment by inhibiting amyloidogenesis and neuroinflammation.


Asunto(s)
Antiinflamatorios/uso terapéutico , Encéfalo/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Niacinamida/análogos & derivados , Animales , Antiinflamatorios/farmacología , Encéfalo/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Cognición , Disfunción Cognitiva/etiología , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos ICR , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Niacinamida/farmacología , Niacinamida/uso terapéutico , Compuestos de Piridinio , Factor de Necrosis Tumoral alfa/metabolismo
7.
Int J Mol Sci ; 20(12)2019 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-31234537

RESUMEN

Lipoprotein lipase (LPL) hydrolyzes triglycerides in lipoprotein to supply fatty acids, and its deficiency leads to hypertriglyceridemia, thereby inducing metabolic syndrome (MetSyn). Nordihydroguaiaretic acid (NDGA) has been recently reported to inhibit LPL secretion by endoplasmic reticulum (ER)-Golgi redistribution. However, the role of NDGA on dyslipidemia and MetSyn remains unclear. To address this question, leptin receptor knock out (KO)-db/db mice were randomly assigned to three different groups: A normal AIN76-A diet (CON), a Western diet (WD) and a Western diet with 0.1% NDGA and an LPL inhibitor, (WD+NDGA). All mice were fed for 12 weeks. The LPL inhibition by NDGA was confirmed by measuring the systemic LPL mass and adipose LPL gene expression. We investigated whether the LPL inhibition by NDGA alters the metabolic phenotypes. NDGA led to hyperglycemia, hypertriglyceridemia, and hypercholesterolemia. More strikingly, the supplementation of NDGA increased the percentage of high density lipoprotein (HDL)small (HDL3a+3b+3c) and decreased the percentage of HDLlarge (HDL2a+2b) compared to the WD group, which indicates that LPL inhibition modulates HDL subclasses. was NDGA increased adipose inflammation but had no impact on hepatic stress signals. Taken together, these findings demonstrated that LPL inhibition by NDGA aggravates metabolic parameters and alters HDL particle size.


Asunto(s)
Lipoproteína Lipasa/antagonistas & inhibidores , Lipoproteínas HDL/metabolismo , Masoprocol/farmacología , Animales , Dieta Occidental , Masculino , Ratones , Ratones Noqueados , Tamaño de la Partícula , Receptores de Leptina/genética
8.
Ir Vet J ; 72: 8, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31367342

RESUMEN

Hepatitis E virus (HEV) is a zoonotic pathogen commonly considered an important foodborne virus. Pet dogs are important reservoirs of zoonotic agents. In the present study, the seroprevalence of HEV in pet dogs and pet veterinarians were found to be 28.2 and 5.0%, respectively. It remains unclear whether pet veterinarians are at higher risk of HEV transmission. However, pet animals and individuals who have contact with infected animals must be continually monitored for public health concerns.

9.
J Antimicrob Chemother ; 72(9): 2454-2460, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28595277

RESUMEN

Objectives: We previously reported the first case of vancomycin treatment failure due to development of vancomycin-intermediate resistance in a patient with an MRSA of ST72, a community genotype in Korea. We investigated two isogenic MRSA strains from this patient, who experienced treatment failure with vancomycin and rifampicin. Methods: We tracked the genetic alterations that confer reduced susceptibility to vancomycin on those two isogenic MRSA strains by WGS. Results: Five non-synonymous mutations were identified, including rpoB (H481Y), dprA (G196C), femA (F92C), vraR (E127K) and agrC (E391stop). We further studied the role of a mutation of vraR in reduced susceptibility to vancomycin. Introduction of the mutated vraR (E127K) into a vancomycin-susceptible Staphylococcus aureus strain resulted in an increase in vraSR mRNA expression and vancomycin MIC and development of the hetero-VISA phenotype, which was confirmed by the population analysis profile (PAP)/AUC. Electron microscopy showed increased cell wall thickness in the strains with mutated vraR. Conclusions: Based on the genomic data, molecular experiments and PAP and cell wall analyses, we propose that a single mutation of vraR is associated with the reduced susceptibility to vancomycin in MRSA and further treatment failure.


Asunto(s)
Antibacterianos/farmacología , Infecciones Comunitarias Adquiridas/microbiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/microbiología , Vancomicina/farmacología , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Pared Celular/efectos de los fármacos , Pared Celular/genética , Pared Celular/ultraestructura , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Proteínas de Unión al ADN/genética , Genotipo , Humanos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica , Mutación , Fenotipo , Infecciones Estafilocócicas/tratamiento farmacológico , Insuficiencia del Tratamiento , Vancomicina/metabolismo
10.
Cytokine ; 95: 80-87, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28249177

RESUMEN

Mycobacterium tuberculosis is a causative agent leading to pleural effusion, characterized by the accumulation of fluid and immune cells in the pleural cavity. Although this phenomenon has been described before, detailed processes or mechanisms associated with the pleural effusion are still not well understood. Pleural mesothelial cells (PMCs) are specialized epithelial cells that cover the body wall and internal organs in pleural cavity playing a central role in pleural inflammation. Toll-like receptors are expressed in various cell types including mesothelial cells and initiate the recognition and defense against mycobacterial infection. In the present study, we investigated direct immune responses of PMCs against two mycobacterial strains, M. bovis vaccine strain Bacille Calmette-Guérin (BCG) and M. tuberculosis virulent strain H37Rv, and the role of TLR2 in such responses. Infection with BCG and H37Rv increased the production of IL-6, CXCL1, and CCL2 in WT PMCs, which was partially impaired in TLR2-deficient cells. In addition, the activation of NF-κB and MAPKs induced by BCG and H37Rv was suppressed in TLR2-deficient PMCs, as compared with the WT cells. TLR2 deficiency led to the decrease of nitric oxide (NO) production through the delayed gene expression of iNOS in PMCs. TLR2 was also shown to be essential for optimal expression of cellular adhesion molecules such as ICAM-1 and VCAM-1 in PMCs in response to BCG and H37Rv. These findings strongly suggest that TLR2 participates in mycobacteria-induced innate immune responses in PMCs and may play a role in pathogenesis of tuberculosis pleural effusion.


Asunto(s)
Células Epiteliales/inmunología , Mycobacterium bovis , Mycobacterium tuberculosis , Pleura/citología , Receptor Toll-Like 2/fisiología , Animales , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Quimiocinas/biosíntesis , Citocinas/biosíntesis , Células Epiteliales/enzimología , Células Epiteliales/metabolismo , Inmunidad Innata , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Transducción de Señal , Receptor Toll-Like 2/metabolismo
11.
Infect Immun ; 84(2): 459-66, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26597988

RESUMEN

Staphylococcus aureus uses the two-component regulatory system GraRS to sense and respond to host defense peptides (HDPs). However, the mechanistic impact of GraS or its extracellular sensing loop (EL) on HDP resistance is essentially unexplored. Strains with null mutations in the GraS holoprotein (ΔgraS) or its EL (ΔEL) were compared for mechanisms of resistance to HDPs of relevant immune sources: neutrophil α-defensin (human neutrophil peptide 1 [hNP-1]), cutaneous ß-defensin (human ß-defensin 2 [hBD-2]), or the platelet kinocidin congener RP-1. Actions studied by flow cytometry included energetics (ENR); membrane permeabilization (PRM); annexin V binding (ANX), and cell death protease activation (CDP). Assay conditions simulated bloodstream (pH 7.5) or phagolysosomal (pH 5.5) pH contexts. S. aureus strains were more susceptible to HDPs at pH 7.5 than at pH 5.5, and each HDP exerted a distinct effect signature. The impacts of ΔgraS and ΔΕL on HDP resistance were peptide and pH dependent. Both mutants exhibited defects in ANX response to hNP-1 or hBD-2 at pH 7.5, but only hNP-1 did so at pH 5.5. Both mutants exhibited hyper-PRM, -ANX, and -CDP responses to RP-1 at both pHs and hypo-ENR at pH 5.5. The actions correlated with ΔgraS or ΔΕL hypersusceptibility to hNP-1 or RP-1 (but not hBD-2) at pH 7.5 and to all study HDPs at pH 5.5. An exogenous EL mimic protected mutant strains from hNP-1 and hBD-2 but not RP-1, indicating that GraS and its EL play nonredundant roles in S. aureus survival responses to specific HDPs. These findings suggest that GraS mediates specific resistance countermeasures to HDPs in immune contexts that are highly relevant to S. aureus pathogenesis in humans.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Staphylococcus aureus/metabolismo , Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana , Humanos , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad
12.
Biochem Biophys Res Commun ; 477(3): 350-5, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27342664

RESUMEN

Oligosaccharide (OS) is used as a sugar replacement as well as an ingredient in functional foods because of its beneficial effects, mainly on reducing calorie content and promoting intestinal health. By contrast, the effects of OS on inflammation are less well investigated. The purpose of this study was to investigate the effects of sucrose-derived OS on glucose control and inflammation in high fat (HF) diet-fed mice. Male C57BL6 mice were randomly assigned to six treatment groups (n = 10-14 mice per group): 1) lean control (CON), 2) HF control, 3) HF-low sucrose (LS, 100 mg/kg/day), 4) HF-high sucrose (HS, 1000 mg/kg/day), 5) HF-low OS (LOS, 100 mg/kg/day), and 6) HF-high OS (HOS, 1000 mg/kg/day). PBS (vehicle), sucrose, and OS were administered by stomach gavage. Body weight, food intake, and markers of liver function (activities of aspartate aminotransferase and alanine aminotransferase) were not affected by the treatments. HOS treatment decreased levels of serum glucose, insulin, and homeostasis model assessment-insulin resistance compared with sucrose treatment. However, serum adiponectin levels of the HOS group were higher than those of the sucrose groups. Serum levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and fetuin-A were lower in the HOS group than in the sucrose groups. Hepatic gene expression levels of pro-inflammatory cytokines and related factors (fetuin-A, NF-κB, TLR4, TNF-alpha, and IL-6) were decreased and the levels of insulin signaling-related molecules (sirtuin 1, insulin receptor, and Akt) were increased in HOS-treated mice as compared with sucrose-treated mice. These results demonstrate that OS treatment is effective in improving glucose control and inflammation in high fat diet-fed mice.


Asunto(s)
Antiinflamatorios/farmacología , Dieta Alta en Grasa , Glucosiltransferasas/metabolismo , Leuconostoc mesenteroides/enzimología , Mutación , Oligosacáridos/farmacología , Sacarosa/química , Animales , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Glucosiltransferasas/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos/efectos de los fármacos
13.
J Antimicrob Chemother ; 71(8): 2100-4, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27121398

RESUMEN

BACKGROUND: In small series or individual reports, SNPs within the mprF ORF and dysregulation of its expression in Staphylococcus aureus have been linked to daptomycin resistance (DAP-R) via a proposed gain-in-function mechanism. Similarly, dysregulation of dltABCD has also been associated with DAP-R. METHODS: Using 22 well-characterized, isogenic daptomycin-susceptible (DAP-S)/DAP-R clinical MRSA strain pairs, we assessed potential relationships of the DAP-R phenotype with: (i) regulation of mprF transcription; (ii) regulation of dltABCD transcription; (iii) expression of the two-component regulatory system, graRS (upstream regulator for both mprF and dltABCD transcription); (iv) SNPs within the graRS promoter or its ORF; and (v) altered mprF transcription and lysyl-phosphatidylglycerol (L-PG) synthesis. RESULTS: Enhanced expression of mprF occurred with SNPs in highly distinct and well-chronicled MprF domain 'hot spots' and rarely occurred without such mutations. Increased expression and/or dysregulation of mprF and dltABCD were not uncommon in DAP-R strains, occurring in 27% of strains for each gene. In these latter strains, neither graRS expression profiles nor polymorphic sequences within the graRS promoter or ORF could be significantly linked to altered transcription of mprF or dlt. CONCLUSIONS: Although graRS can co-regulate mprF and dltABCD expression, loci outside of this regulon appear to be involved in dysregulation of these latter two genes and the DAP-R phenotype. Finally, DAP-R strains exhibiting significantly altered mprF transcription profiles produced significantly increased levels of L-PG.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/biosíntesis , Daptomicina/farmacología , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Proteínas Bacterianas/genética , Perfilación de la Expresión Génica , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Transcripción Genética
14.
Cytokine ; 77: 127-34, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26579632

RESUMEN

Mesothelial cells are composed of monolayer of the entire surface of serosal cavities including pleural, pericardial, and peritoneal cavity. Although mesothelial cells are known to express multiple Toll-like receptors (TLRs) which contribute to trigger innate immune responses against infections, the precise molecular mechanism remains still unclear. In the present study, we investigated the role of Toll/IL-1 domain-containing adaptor inducing IFN-ß (TRIF), one of the two major TLRs-adaptor molecules, on innate immune response induced by TLR3 and TLR4 stimulation in murine peritoneal mesothelial cells (PMCs). TRIF was strongly expressed in PMCs and its deficiency led to impaired production of cytokines and chemokines by poly I:C and LPS in the cells. Activation of NF-κB or MAPKs through poly I:C and LPS stimulation was reduced in TRIF-deficient PMCs as compared to the WT cells. TRIF was also necessary for optimal nitric oxide synthesis and gene expression of inducible nitric oxide synthase (iNOS) and IFN-ß in PMCs in response to poly I:C and LPS. Furthermore, both Escherichia coli and Pseudomonas aeruginosa induced high level of IL-6, CXCL1, and CCL2 production in PMCs, which was significantly impaired by TRIF deficiency. These results demonstrated that TRIF is required for optimal activation of innate immune responses in mesothelial cells against microbial infections.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Células Epiteliales/metabolismo , Inmunidad Innata/inmunología , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Western Blotting , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Escherichia coli/fisiología , Expresión Génica/efectos de los fármacos , Inmunidad Innata/genética , Interferón beta/genética , Interferón beta/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Peritoneo/citología , Peritoneo/metabolismo , Poli I-C/farmacología , Pseudomonas aeruginosa/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptor Toll-Like 3/genética , Receptor Toll-Like 4/genética
15.
Infect Immun ; 83(4): 1620-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25644013

RESUMEN

Hexose phosphate is an important carbon source within the cytoplasm of host cells. Bacterial pathogens that invade, survive, and multiply within various host epithelial cells exploit hexose phosphates from the host cytoplasm through the hexose phosphate transport (HPT) system to gain energy and synthesize cellular components. In Escherichia coli, the HPT system consists of a two-component regulatory system (UhpAB) and a phosphate sensor protein (UhpC) that tightly regulate expression of a hexose phosphate transporter (UhpT). Although growing evidence suggests that Staphylococcus aureus also can invade, survive, and multiply within various host epithelial cells, the genetic elements involved in the HPT system in S. aureus have not been characterized yet. In this study, we identified and characterized the HPT system in S. aureus that includes the hptRS (a novel two-component regulatory system), the hptA (a putative phosphate sensor), and the uhpT (a hexose phosphate transporter) genes. The hptA, hptRS, and uhpT markerless deletion mutants were generated by an allelic replacement method using a modified pMAD-CM-GFPuv vector system. We demonstrated that both hptA and hptRS are required to positively regulate transcription of uhpT in response to extracellular phosphates, such as glycerol-3-phosphate (G3P), glucose-6-phosphate (G6P), and fosfomycin. Mutational studies revealed that disruption of the hptA, hptRS, or uhpT gene impaired the growth of bacteria when the available carbon source was limited to G6P, impaired survival/multiplication within various types of host cells, and increased resistance to fosfomycin. The results of this study suggest that the HPT system plays an important role in adaptation of S. aureus within the host cells and could be an important target for developing novel antistaphylococcal therapies.


Asunto(s)
Antibacterianos/farmacología , Fosfomicina/farmacología , Hexosas/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Animales , Proteínas Bacterianas/genética , Transporte Biológico/genética , Línea Celular , Farmacorresistencia Bacteriana , Células Epiteliales/microbiología , Eliminación de Gen , Glucosa-6-Fosfato/metabolismo , Humanos , Ratones , Staphylococcus aureus/metabolismo , Activación Transcripcional/genética
16.
Antimicrob Agents Chemother ; 59(8): 4930-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26055370

RESUMEN

MprF is responsible for the lysinylation of phosphatidylglycerol (PG) to synthesize the positively charged phospholipid (PL) species, lysyl-PG (L-PG). It has been proposed that the single-nucleotide polymorphisms (SNPs) within the mprF open reading frame (ORF) are associated with a gain-in-function phenotype in terms of daptomycin resistance in Staphylococcus aureus. (Note that although the official term is daptomycin nonsusceptibility, we use the term daptomycin resistance in this paper for ease of presentation.) Using 22 daptomycin-susceptible (DAP(s))/daptomycin-resistant (DAP(r)) clinical methicillin-resistant S. aureus (MRSA) strain pairs, we assessed (i) the frequencies and distribution of putative mprF gain-in-function SNPs, (ii) the relationships of the SNPs to both daptomycin resistance and cross-resistance to the prototypical endovascular host defense peptide (HDP) thrombin-induced platelet microbicidal protein (tPMP), and (iii) the impact of mprF SNPs on positive surface charge phenotype and modifications of membrane PL profiles. Most of the mprF SNPs identified in our DAP(r) strains were clustered within the two MprF loci, (i) the central bifunctional domain and (ii) the C-terminal synthase domain. Moreover, we were able to correlate the presence and location of mprF SNPs in DAP(r) strains with HDP cross-resistance, positive surface charge, and L-PG profiles. Although DAP(r) strains with mprF SNPs in the bifunctional domain showed higher resistance to tPMPs than DAP(r) strains with SNPs in the synthase domain, this relationship was not observed in positive surface charge assays. These results demonstrated that both charge-mediated and -unrelated mechanisms are involved in DAP resistance and HDP cross-resistance in S. aureus.


Asunto(s)
Aminoaciltransferasas/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas Bacterianas/genética , Daptomicina/farmacología , Staphylococcus aureus Resistente a Meticilina/genética , Meticilina/farmacología , Polimorfismo de Nucleótido Simple/genética , Antibacterianos/farmacología , Regulación Bacteriana de la Expresión Génica/genética , Humanos , Resistencia a la Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana/métodos , Fenotipo , Infecciones Estafilocócicas/tratamiento farmacológico
17.
Infect Immun ; 82(12): 5336-45, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25287929

RESUMEN

The Staphylococcus aureus two-component regulatory system, GraRS, is involved in resistance to killing by distinct host defense cationic antimicrobial peptides (HD-CAPs). It is believed to regulate downstream target genes such as mprF and dltABCD to modify the S. aureus surface charge. However, the detailed mechanism(s) by which the histidine kinase, GraS, senses specific HD-CAPs is not well defined. Here, we studied a well-characterized clinical methicillin-resistant S. aureus (MRSA) strain (MW2), its isogenic graS deletion mutant (ΔgraS strain), a nonameric extracellular loop mutant (ΔEL strain), and four residue-specific ΔEL mutants (D37A, P39A, P39S, and D35G D37G D41G strains). The ΔgraS and ΔEL strains were unable to induce mprF and dltA expression and, in turn, demonstrated significantly increased susceptibilities to daptomycin, polymyxin B, and two prototypical HD-CAPs (hNP-1 and RP-1). Further, P39A, P39S, and D35G-D37G-D41G ΔEL mutations correlated with moderate increases in HD-CAP susceptibility. Reductions of mprF and dltA induction by PMB were also found in the ΔEL mutants, suggesting these residues are pivotal to appropriate activation of the GraS sensor kinase. Importantly, a synthetic exogenous soluble EL mimic of GraS protected the parental MW2 strain against hNP-1- and RP-1-mediated killing, suggesting a direct interaction of the EL with HD-CAPs in GraS activation. In vivo, the ΔgraS and ΔEL strains displayed dramatic reductions in achieved target tissue MRSA counts in an endocarditis model. Taken together, our results provide new insights into potential roles of GraS in S. aureus sensing of HD-CAPs to induce adaptive survival responses to these molecules.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas Bacterianas/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/fisiología , Proteínas Quinasas/metabolismo , Estrés Fisiológico , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Endocarditis/microbiología , Endocarditis/patología , Femenino , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Quinasas/genética , Conejos , Eliminación de Secuencia
18.
Antimicrob Agents Chemother ; 58(12): 7462-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25288091

RESUMEN

Over the past several years, single-nucleotide polymorphisms (SNPs) within the mprF open reading frame (ORF) have been proposed to be associated with a gain-of-function phenotype in terms of daptomycin (DAP) nonsusceptibility (referred to as daptomycin resistance [DAP-R] herein for ease of presentation) in Staphylococcus aureus. We investigated the frequencies of SNPs within the mprF ORF and the relationships of such SNPs to cross-resistance between DAP and cationic host defense peptides (HDPs). Thirty-five well-characterized, unique DAP-susceptible (DAP-S) and DAP-R methicillin-resistant S. aureus (MRSA) isolates of the clonal complex 5 genotype were used. In addition to mprF SNPs and DAP-HDP cross-resistance, several other key genotypic and phenotypic metrics often associated with DAP-R were delineated, as follows: (i) mprF expression, (ii) membrane phospholipid content, (iii) positive surface charge, (iv) DAP binding, and (v) cell wall thickness profiles. A number of DAP-S strains (MICs of ≤ 1 µg/ml) exhibited mprF SNPs, occasionally with high-level mprF sequence variation from the genotype reference strain. However, none of these SNPs were localized to well-chronicled mprF hot spot locations associated with DAP-R in S. aureus. In contrast, all 8 DAP-R isolates demonstrated SNPs within such known mprF hot spots. Moreover, only the DAP-R strains showed MprF gain-of-function phenotypes, enhanced mprF expression, higher survival against two prototypical HDPs, and reduced DAP binding. Although a heterogenous array of mprF SNPs were often found in DAP-S strains, only selected hot spot SNPs, combined with concurrent mprF dysregulation, were associated with the DAP-R phenotype.


Asunto(s)
Aminoaciltransferasas/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Polimorfismo de Nucleótido Simple , Aminoaciltransferasas/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas Bacterianas/metabolismo , Pared Celular/química , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Células Clonales , Daptomicina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Humanos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pruebas de Sensibilidad Microbiana , Fosfolípidos/química , Fosfolípidos/metabolismo , Infecciones Estafilocócicas/microbiología
19.
J Infect Dis ; 208(3): 520-7, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23599317

RESUMEN

Staphylococcus aureus clonal complex 75 (herein referred to as S. argenteus) lacks the carotenoid pigment operon, crtOPQMN, responsible for production of the putative virulence factor, staphyloxanthin. Although a common cause of community-onset skin infections among Indigenous populations in northern Australia, this clone is infrequently isolated from hospital-based patients with either bacteremic or nonbacteremic infections. We hypothesized that S. argenteus would have attenuated virulence compared to other S. aureus strains due to its staphyloxanthin "deficiency." Compared to prototypical S. aureus strains, S. argenteus was more susceptible to oxidative stress and neutrophil killing in vitro and had reduced virulence in murine sepsis and skin infection models. Transformation with pTX-crtOPQMN resulted in staphyloxanthin expression and increased resistance to oxidative stress in vitro. However, neither resistance to neutrophil killing nor in vivo virulence was increased. Thus, reduced virulence of S. argenteus in these models is due to mechanisms unrelated to lack of staphyloxanthin production.


Asunto(s)
Sepsis/patología , Infecciones Estafilocócicas/patología , Infecciones Cutáneas Estafilocócicas/patología , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Factores de Virulencia/metabolismo , Xantófilas/metabolismo , Animales , Australia , Niño , Modelos Animales de Enfermedad , Prueba de Complementación Genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Operón , Sepsis/microbiología , Infecciones Estafilocócicas/microbiología , Infecciones Cutáneas Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/aislamiento & purificación , Virulencia , Factores de Virulencia/deficiencia , Factores de Virulencia/genética , Xantófilas/deficiencia , Xantófilas/genética
20.
PLoS One ; 19(1): e0296651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38198459

RESUMEN

Diabetes is often associated with reduced muscle mass and function. The ketogenic diet (KD) may improve muscle mass and function via the induction of nutritional ketosis. To test whether the KD is able to preserve muscle mass and strength in a mouse model of type 2 diabetes (T2DM), C57BL/6J mice were assigned to lean control, diabetes control, and KD groups. The mice were fed a standard diet (10% kcal from fat) or a high-fat diet (HFD) (60% kcal from fat). The diabetic condition was induced by a single injection of streptozotocin (STZ; 100 mg/kg) and nicotinamide (NAM; 120 mg/kg) into HFD-fed mice. After 8-week HFD feeding, the KD (90% kcal from fat) was fed to the KD group for the following 6 weeks. After the 14-week experimental period, an oral glucose tolerance test and grip strength test were conducted. Type 2 diabetic condition induced by HFD feeding and STZ/NAM injection resulted in reduced muscle mass and grip strength, and smaller muscle fiber areas. The KD nutritional intervention improved these effects. Additionally, the KD altered the gene expression of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome- and endoplasmic reticulum (ER) stress-related markers in the muscles of diabetic mice. Collectively, KD improved muscle mass and function with alterations in NLRP3 inflammasome and ER stress.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dieta Cetogénica , Animales , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Inflamasomas , Modelos Animales de Enfermedad , Fibras Musculares Esqueléticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA