Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(12): e2307960, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946615

RESUMEN

The quality of two-step processed perovskites is significantly influenced by the distribution of organic amine salts. Especially, modulating the distribution of organic amine salts remains a grand challenge for sequential vapor-deposited perovskites due to the blocking effect of bottom compact PbI2. Herein, an ultrahigh humidity treatment strategy is developed to facilitate the diffusion of formamidinium iodide (FAI) from the top surface to the buried bottom interface on the sequential vapor-deposited bilayer structure. Both experimental and theoretical investigations elucidate the mechanism that moisture helps to i) create FAI diffusion channels by inducing a phase transition from α- to δ-phase in the perovskite, and ii) enhance the diffusivity of FAI by forming hydrogen bonds. This ultrahigh humidity treatment strategy enables the formation of a desired homogeneous and high-quality α-phase after annealing. As a result, a champion efficiency of 22.0% is achieved and 97.5% of its initial performance is maintained after aging for 1050 h under ambient air with a relative humidity of up to 80%. This FAI diffusion strategy provides new insights into the reproducible, scalable, and high-performance sequential vapor-deposited perovskite solar cells.

2.
Ecotoxicol Environ Saf ; 277: 116372, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38669875

RESUMEN

Environmental pollution, including air pollution, plastic contamination, and heavy metal exposure, is a pressing global issue. This crisis contributes significantly to pollution-related diseases and is a critical risk factor for chronic health conditions, including cancer. Mounting evidence underscores the pivotal role of N6-methyladenosine (m6A) as a crucial regulatory mechanism in pathological processes and cancer progression. Governed by m6A writers, erasers, and readers, m6A orchestrates alterations in target gene expression, consequently playing a vital role in a spectrum of RNA processes, covering mRNA processing, translation, degradation, splicing, nuclear export, and folding. Thus, there is a growing need to pinpoint specific m6A-regulated targets in environmental pollutant-induced carcinogenesis, an emerging area of research in cancer prevention. This review consolidates the understanding of m6A modification in environmental pollutant-induced tumorigenesis, explicitly examining its implications in lung, skin, and bladder cancer. We also investigate the biological mechanisms that underlie carcinogenesis originating from pollution. Specific m6A methylation pathways, such as the HIF1A/METTL3/IGF2BP3/BIRC5 network, METTL3/YTHDF1-mediated m6A modification of IL 24, METTL3/YTHDF2 dynamically catalyzed m6A modification of AKT1, METTL3-mediated m6A-modified oxidative stress, METTL16-mediated m6A modification, site-specific ATG13 methylation-mediated autophagy, and the role of m6A in up-regulating ribosome biogenesis, all come into play in this intricate process. Furthermore, we discuss the direction regarding the interplay between pollutants and RNA metabolism, particularly in immune response, providing new information on RNA modifications for future exploration.


Asunto(s)
Adenosina , Carcinogénesis , Contaminantes Ambientales , Adenosina/análogos & derivados , Carcinogénesis/inducido químicamente , Contaminantes Ambientales/toxicidad , Humanos , Metilación , Animales , ARN/genética , Metilación de ARN
3.
J Am Chem Soc ; 145(46): 25242-25251, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37767700

RESUMEN

Single-walled carbon nanotube (SWCNT) heterostructures have shown great potential in catalysis, magnetism, and nanofluidics, in which host SWCNTs with certain conductivity (metallic or semiconducting) are highly required. Herein, inspired by the large molecular weight and redox properties of polyoxometalate (POM) clusters, we reported the selective separation of POM encapsulated metallic SWCNTs (POM@m-SWCNTs) with a uniform diameter through density gradient ultracentrifugation (DGU). The confined POMs increased the SWCNT density and amplified the nanotubes' density difference, thus greatly lowering the centrifugal force (70,000g) of DGU. With this strategy, a series of POM@m-SWCNTs of ∼1.2 nm with high purity were sorted. The mechanism supported by theoretical and experimental evidence showed that the separation of m-SWCNTs depended on not only nanotube/cluster size but also the conductivity of SWCNTs. The smallest 1.2 nm m-SWCNT that can exactly accommodate a 0.9 nm-{Mo6} cluster exhibited the maximum electron transfer to inner clusters; thus, intertube π-π stacking of such m-SWCNTs was greatly loosened, leading to the preferential dispersion into individual ones and partitioning in the uppermost layer after DGU. As a proof-of-concept application, this sorting strategy was extended to separate heavy-element 238U-encapsulated m-SWCNTs. The phase-pure, tiny (1-2.5 nm) U4O9 crystals with atomic vacancy clusters were fabricated on m-SWCNTs through growth kinetic control. This work may provide a general way to construct desired actinide materials on specific SWCNTs.

4.
J Nanobiotechnology ; 21(1): 204, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386404

RESUMEN

Dihydroartemisinin (DHA), a natural product derived from the herbal medicine Artemisia annua, is recently used as a novel anti-cancer agent. However, some intrinsic disadvantages limit its potential for clinical management of cancer patients, such as poor water solubility and low bioavailability. Nowadays, the nanoscale drug delivery system emerges as a hopeful platform for improve the anti-cancer treatment. Accordingly, a metal-organic framework (MOF) based on zeolitic imidazolate framework-8 was designed and synthesized to carry DHA in the core (ZIF-DHA). Contrast with free DHA, these prepared ZIF-DHA nanoparticles (NPs) displayed preferable anti-tumor therapeutic activity in several ovarian cancer cells accompanied with suppressed production of cellular reactive oxygen species (ROS) and induced apoptotic cell death. 4D-FastDIA-based mass spectrometry technology indicated that down-regulated reactive oxygen species modulator 1 (ROMO1) might be regarded as potential therapeutic targets for ZIF-DHA NPs. Overexpression of ROMO1 in ovarian cancer cells significantly reversed the cellular ROS-generation induced by ZIF-DHA, as well as the pro-apoptosis effects. Taken together, our study elucidated and highlighted the potential of zeolitic imidazolate framework-8-based MOF to improve the activity of DHA to treat ovarian cancer. Our findings suggested that these prepared ZIF-DHA NPs could be an attractive therapeutic strategy for ovarian cancer.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Neoplasias Ováricas , Humanos , Femenino , Especies Reactivas de Oxígeno , Neoplasias Ováricas/tratamiento farmacológico , Apoptosis , Proteínas de la Membrana , Proteínas Mitocondriales
5.
Angew Chem Int Ed Engl ; 62(34): e202303280, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37040089

RESUMEN

Dispersing metal-organic framework (MOF) solids in stable colloids is crucial for their availability and processibility. Herein, we report a crown ether surface coordination approach for functionalizing the surface-exposed metal sites of MOF particles with amphiphilic carboxylated crown ether (CEC ). The surface-bound crown ethers significantly improve MOF solvation without compromising the accessible voids. We demonstrate that CEC -coated MOFs exhibit exceptional colloidal dispersibility and stability in 11 distinct solvents and six polymer matrices with a wide range of polarities. The MOF-CEC can be instantaneously suspended in immiscible two-phase solvents as an effective phase-transfer catalyst and can form various uniform membranes with enhanced adsorption and separation performance, which highlights the effectiveness of crown ether coating.

6.
J Nanobiotechnology ; 20(1): 230, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568865

RESUMEN

BACKGROUND: Chemodynamic therapy (CDT) relying on intracellular iron ions and H2O2 is a promising therapeutic strategy due to its tumor selectivity, which is limited by the not enough metal ions or H2O2 supply of tumor microenvironment. Herein, we presented an efficient CDT strategy based on Chinese herbal monomer-dihydroartemisinin (DHA) as a substitute for the H2O2 and recruiter of iron ions to amplify greatly the reactive oxygen species (ROS) generation for synergetic CDT-ferroptosis therapy. RESULTS: The DHA@MIL-101 nanoreactor was prepared and characterized firstly. This nanoreactor degraded under the acid tumor microenvironment, thereby releasing DHA and iron ions. Subsequent experiments demonstrated DHA@MIL-101 significantly increased intracellular iron ions through collapsed nanoreactor and recruitment effect of DHA, further generating ROS thereupon. Meanwhile, ROS production introduced ferroptosis by depleting glutathione (GSH), inactivating glutathione peroxidase 4 (GPX4), leading to lipid peroxide (LPO) accumulation. Furthermore, DHA also acted as an efficient ferroptosis molecular amplifier by direct inhibiting GPX4. The resulting ROS and LPO caused DNA and mitochondria damage to induce apoptosis of malignant cells. Finally, in vivo outcomes evidenced that DHA@MIL-101 nanoreactor exhibited prominent anti-cancer efficacy with minimal systemic toxicity. CONCLUSION: In summary, DHA@MIL-101 nanoreactor boosts CDT and ferroptosis for synergistic cancer therapy by molecular amplifier DHA. This work provides a novel and effective approach for synergistic CDT-ferroptosis with Chinese herbal monomer-DHA and Nanomedicine.


Asunto(s)
Ferroptosis , Neoplasias , Artemisininas , Línea Celular Tumoral , Glutatión , Humanos , Peróxido de Hidrógeno , Hierro , Nanomedicina , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral
7.
J Am Chem Soc ; 143(27): 10120-10130, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34105955

RESUMEN

Semiconducting single-walled carbon nanotubes (s-SWCNTs) with a diameter of around 1.0-1.5 nm, which present bandgaps comparable to silicon, are highly desired for electronic applications. Therefore, the preparation of s-SWCNTs of such diameters has been attracting great attention. The inner surface of SWCNTs has a suitable curvature and large contacting area, which is attractive in host-guest chemistry triggered by electron transfer. Here we reported a strategy of host-guest molecular interaction between SWCNTs and inner clusters with designed size, thus selectively separating s-SWCNTs of expected diameters. When polyoxometalate clusters of ∼1 nm in size were filled in the inner cavities of SWCNTs, s-SWCNTs with diameters concentrated at ∼1.3-1.4 nm were selectively extracted with the purity of ∼98% by a commercially available polyfluorene derivative. The field-effect transistors built from the sorted s-SWCNTs showed a typical behavior of semiconductors. The sorting mechanisms associated with size-dependent electron transfer from nanotubes to inner polyoxometalate were revealed by the spectroscopic and in situ electron microscopic evidence as well as the theoretical calculation. The polyoxometalates with designable size and redox property enable the flexible regulation of interaction between the nanotubes and the clusters, thus tuning the diameter of sorted s-SWCNTs. The present sorting strategy is simple and should be generally feasible in other SWCNT sorting techniques, bringing both great easiness in dispersant design and improved selectivity.

8.
Korean J Physiol Pharmacol ; 22(6): 627-636, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30402023

RESUMEN

Endometriosis (EM) is one of the most common gynaecological disorder affecting women in their reproductive age. Mechanisms involved in the pathogenesis of EM remains poorly understood, however inflammatory responses have been reported to be significantly involved. The efficacy of 6-shogaol on proliferation of endometriotic lesions and inflammatory pathways in experimentally-induced EM model was explored in this study. EM was stimulated in Sprague-Dawley rats by implantation of autologous endometrium onto the peritoneum abdominal wall. Separate groups were treated with 6-shogaol (50, 100 or 150 mg/kg b.wt/day) via oral gavage for one month period. Gestrinone (GTN) group received GTN (0.5 mg/kg/day) as positive control. Five weeks after implantation, the spherical volume of ecto-uterine tissues was determined. Treatment with 6-shogaol significantly reduced the implant size. Histological analysis reported atrophy and regression of the lesions. 6-shogaol administration effectively down-regulated NF-κB signaling, VEGF and VEGFR-2 (Flk-1) expression in the endometriotic lesions. Excess production of IL-1ß and IL-6 (pro-inflammatory cytokines), PGE2 and nitric oxide (NO) were reduced. Overall, the results of the study reveal the efficacy of 6-shogaol against endometriosis via effectively suppressing proliferation of the lesions and modulating angiogenesis and COX-2/NF-κB-mediated inflammatory cascades.

9.
Bioorg Med Chem Lett ; 27(23): 5344-5348, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29110986

RESUMEN

New synthetic methods were developed for the preparation of 2,3,6-trisubstituted 1-oxo-1,2-dihydroisoquinolines as CRTh2 antagonists. The isoquinolinone core could be constructed before the introduction of substitution groups or synthesized through a catalytic intramolecular cyclization reaction with desired substitution groups properly installed. These synthetic strategies have helped to accelerate the SAR development of this series, and potent lead compounds were identified in both the CRTh2 receptor binding assay and the CD11b biomarker assay.


Asunto(s)
Isoquinolinas/farmacología , Receptores Inmunológicos/antagonistas & inhibidores , Receptores de Prostaglandina/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Isoquinolinas/síntesis química , Isoquinolinas/química , Estructura Molecular , Relación Estructura-Actividad
10.
Arch Virol ; 161(10): 2855-8, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27424027

RESUMEN

Norovirus (NoV) is the most common cause of non-bacterial acute gastroenteritis (AGE) outbreaks worldwide. Eight NoV outbreaks in the Fengtai District of Beijing City, China, were identified in 2014. Samples were collected from the eight outbreaks, and 73 out of 119 samples from cases and 10 out of 59 samples from the close contacts were positive for NoVs. The genotypes were determined by sequencing analysis. Six different GII genotypes, including GII.2, 4, 6, 7, 8, 14, and 17 were found, and GII.4 was not the local major epidemic genotype in the present study. Enhanced strain surveillance is necessary for future NoV epidemics.


Asunto(s)
Infecciones por Caliciviridae/epidemiología , Brotes de Enfermedades , Norovirus/aislamiento & purificación , Adolescente , Adulto , Beijing/epidemiología , Niño , Preescolar , Femenino , Variación Genética , Genotipo , Humanos , Masculino , Epidemiología Molecular , Norovirus/clasificación , Norovirus/genética , Análisis de Secuencia de ADN , Adulto Joven
11.
Virol J ; 12: 92, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26084565

RESUMEN

BACKGROUND: Coxsackievirus A4 (CV-A4) is classified as human enterovirus A according to its serotype. CV-A4, an etiological agent of hand, foot, and mouth disease, affects children worldwide and can circulate in closed environments such as schools and hospitals for long periods. FINDINGS: An outbreak of febrile illness at a nursery school in Beijing, China, was confirmed to be caused by CV-A4. Phylogenetic analysis of the complete genome of the isolated strain showed that the virus belongs to the same cluster as the predominant CV-A4 strain in China. This outbreak was controlled by effective measures. CONCLUSIONS: The early identification of the pathogen and timely intervention may be the most critical factors in controlling an outbreak caused by CV-A4 in a preschool.


Asunto(s)
Infecciones por Coxsackievirus/epidemiología , Brotes de Enfermedades , Enterovirus/clasificación , Enterovirus/aislamiento & purificación , Fiebre/etiología , Escuelas de Párvulos , Beijing/epidemiología , Niño , Preescolar , Infecciones por Coxsackievirus/patología , Infecciones por Coxsackievirus/virología , Femenino , Fiebre/virología , Humanos , Lactante , Control de Infecciones/métodos , Masculino , Datos de Secuencia Molecular , ARN Viral/genética , Análisis de Secuencia de ADN
12.
Bioorg Med Chem Lett ; 24(6): 1615-20, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24556380

RESUMEN

Isoxazoles are frequently used amide isosteres, as shown in the context of discovery of CRTh2 antagonists from amide 1 to isoxazole 2. However, persistent agonism and poor solubility in isoxazole series presented challenges to its further development. Based on the concept of quality by design (QbD), 5,5-disubstituted isoxazolines 3 were introduced. The chirality at 5 position of isoxazolines controlled the switch between two modes of actions, which led to a novel series of pure antagonists. This non-planar motif also conferred a change of shape of these molecules, which avoided flat structures and improved their physical properties.


Asunto(s)
Amidas/química , Diseño de Fármacos , Isoxazoles/química , Quinazolinonas/química , Receptores Inmunológicos/antagonistas & inhibidores , Receptores de Prostaglandina/antagonistas & inhibidores , Animales , Perros , Semivida , Haplorrinos , Humanos , Isoxazoles/síntesis química , Isoxazoles/farmacocinética , Quinazolinonas/síntesis química , Quinazolinonas/farmacocinética , Ratas , Ratas Wistar , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Solubilidad , Relación Estructura-Actividad
13.
J Cancer Res Ther ; 20(2): 739-744, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38687948

RESUMEN

ABSTRACT: Lung adenocarcinoma (LUAD) encompasses all lung epithelial cancers except small-cell lung cancer. Although programmed cell death protein 1 (PD-1) inhibitors, such as pembrolizumab, and other Food and Drug Administration-approved immune checkpoint inhibitors, offer new hope for LUAD treatment, LUAD's overall efficacy remains limited. Thus, the combination of immunotherapy with other therapeutic approaches has gained widespread attention. Local therapy is an optimal method for treating many advanced unresectable lung cancers. Herein, we present a case of a patient with multiple metastases from LUAD, who attained complete response for more than 3 years until present through local therapy combined with a PD-1 inhibitor.


Asunto(s)
Adenocarcinoma del Pulmón , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/terapia , Adenocarcinoma del Pulmón/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Masculino , Inmunoterapia/métodos , Terapia Combinada , Anticuerpos Monoclonales Humanizados/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Persona de Mediana Edad , Resultado del Tratamiento
14.
Adv Healthc Mater ; : e2400474, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875525

RESUMEN

Ferroptosis induction is particularly promising for cancer therapy when the apoptosis pathway is compromised. Current strategies in nanomedicine for inducing ferroptosis primarily focus on promoting the accumulation of reactive oxygen species (ROS). However, the presence of intracellular antioxidants, such as nuclear factor erythroid 2-related factor 2 (Nrf2), can limit the effectiveness of such therapy by activating detoxification systems and eliminating ROS. To overcome this challenge, we developed a synergistic ferroptosis-inducing agent by modifying manganese (Mn2+)-1,8-dihydroxy-3-hydroxymethyl-anthraquinone (aloe-emodin, AE) with polyvinyl pyrrolidone (PVP) to create nanoparticles (MAP NPs). In the tumor microenvironment, these NPs degraded and released AE and Mn(II), facilitating the generation of ROS and Mn(IV) through a Fenton-like reaction between hydrogen peroxide (H2O2) and Mn(II). Mn(IV) subsequently interacts with glutathione (GSH) to induce a cyclic catalytic effect, and the depletion of GSH diminished the activation of glutathione-dependent peroxidase 4 (GPX4). Furthermore, AE inhibits the activity of Nrf2 and depleted GSH, thereby synergistically enhancing antitumor efficacy. Here it is demonstrated that MAP NPs effectively generate a robust ROS storm within tumor cells, suggesting that high-performance ferroptosis therapy is effective. Additionally, the inclusion of Mn(II) in the MAP NPs enables real-time monitoring of therapeutic efficacy via magnetic resonance T1-weighted contrast imaging.

15.
Nat Commun ; 15(1): 448, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200045

RESUMEN

The state-of-the-art alkaline hydrogen evolution catalyst of united ruthenium single atoms and small ruthenium nanoparticles has sparked considerable research interest. However, it remains a serious problem that hydrogen evolution primarily proceeds on the less active ruthenium single atoms instead of the more efficient small ruthenium nanoparticles in the catalyst, hence largely falling short of its full activity potential. Here, we report that by combining highly oxophilic cerium single atoms and fully-exposed ruthenium nanoclusters on a nitrogen functionalized carbon support, the alkaline hydrogen evolution centers are facilely reversed to the more active ruthenium nanoclusters driven by the strong oxophilicity of cerium, which significantly improves the hydrogen evolution activity of the catalyst with its mass activity up to -10.1 A mg-1 at -0.05 V. This finding is expected to shed new light on developing more efficient alkaline hydrogen evolution catalyst by rational regulation of the active centers for hydrogen evolution.

16.
Sci Rep ; 13(1): 5286, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002257

RESUMEN

Bearings are very important components in mechanical equipment, and detecting bearing failures helps ensure healthy operation of mechanical equipment and can prevent catastrophic accidents. Most of the well-established detection methods do not take into account the correlation between signals and are difficult to accurately identify those fault samples that have a low degree of failure. To address this problem, we propose a graph neural network-based bearing fault detection (GNNBFD) method. The method first constructs a graph using the similarity between samples; secondly the constructed graph is fed into a graph neural network (GNN) for feature mapping, and the samples outputted by the GNN network fuse the feature information of their neighbors, which is beneficial to the downstream detection task; then the samples mapped by the GNN network are fed into base detector for fault detection; finally, the results determined by the integrated base detector algorithm are determined, and the top n samples with the highest outlier scores are the faulty samples. The experimental results with five state-of-the-art algorithms on publicly available datasets show that the GNNBFD algorithm improves the AUC by 6.4% compared to the next best algorithm, proving that the GNNBFD algorithm is effective and feasible.

17.
Sci Rep ; 13(1): 6070, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055423

RESUMEN

Internal solitary waves (ISWs) in the South China Sea (SCS) are considerably modulated by the background currents. In this study, a three-dimensional high-resolution non-hydrostatic model is configured to investigate how the Kuroshio influences the generation and evolution of ISWs in the northern SCS. Three runs are conducted, including one control experiment without the Kuroshio and two sensitivity experiments with the Kuroshio in different paths. In the Luzon Strait (LS), the Kuroshio reduces the westward baroclinic energy flux radiated into the SCS, resulting in weakened ISWs. In the SCS basin, the background currents further refract the ISWs. With the leaping Kuroshio, the A-waves have longer crest lines but lower amplitudes compared with those in the control run. In contrast, the B-waves are less affected by the leaping Kuroshio. In the presence of looping Kuroshio, the wave refraction caused by the intrusion currents in the SCS basin results in the weakest amplitudes and energy but the widest crest lines of ISWs. Moreover, the energy of the A-waves exhibits double-peak structure along the crest lines. The crest lines of the B-waves extend to 19.5° N, which are more south than those in summer. These results highlight the importance of the Kuroshio on the 3D features of ISWs in the SCS.

18.
Nat Commun ; 14(1): 5223, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37634039

RESUMEN

Functionalizing porous materials with capping agents generates hybrid materials with enhanced properties, while the challenge is how to improve the selectivity and maintain the porosity of the parent framework. Herein, we developed a "Cage-on-MOF" strategy to tune the recognition and catalytic properties of MOFs without impairing their porosity. Two types of porous coordination cages (PCCs) of opposite charges containing secondary binding groups were developed to coordinatively functionalize two distinct porous MOFs, namely MOF@PCC nanocomposites. We demonstrated that the surface-capped PCCs can act as "modulators" to effectively tune the surface charge, stability, and adsorption behavior of different host MOF particles. More importantly, the MOF@PCCs can serve as selective heterogeneous catalysts for condensation reactions to achieve reversed product selectivity and excellent recyclability. This work sets the foundation for using molecular cages as porous surface-capping agents to functionalize and manipulate another porous material, without affecting the intrinsic properties of the parent framework.

19.
Nat Commun ; 14(1): 5598, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699870

RESUMEN

Synthetic polypeptides have emerged as versatile tools in both materials science and biomedical engineering due to their tunable properties and biodegradability. While the advancements of N-carboxyanhydride (NCA) ring-opening polymerization (ROP) techniques have aimed to expedite polymerization and reduce environment sensitivity, the broader implications of such methods remain underexplored, and the integration of ROP products with other materials remains a challenge. Here, we show an approach inspired by the success of many heterogeneous catalysts, using nanoscale metal-organic frameworks (MOFs) as co-catalysts for NCA-ROP accelerated also by peptide helices in proximity. This heterogeneous approach offers multiple advantages, including fast kinetics, low environment sensitivity, catalyst recyclability, and seamless integration with hybrid materials preparation. The catalytic system not only streamlines the preparation of polypeptides and polypeptide-coated MOF complexes (MOF@polypeptide hybrids) but also preserves and enhances their homogeneity, processibility, and overall functionalities inherited from the constituting MOFs and polypeptides.

20.
iScience ; 26(10): 107867, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37766967

RESUMEN

Metal-organic frameworks (MOFs) are crystalline porous materials characterized by their high porosity and chemical tailorability. To realize the full potential of synthesized MOFs, it is important to transform them from crystalline solid powders into materials with integrated morphologies and properties. One promising approach is facet-controlled assembly, which involves arranging individual crystalline MOF particles into ordered macroscale structures by carefully controlling the interactions between particles. The resulting assembled MOF structures maintain the characteristics of individual particles while also exhibiting improved properties overall. In this article, we emphasize the essential concepts of MOF assembly, highlighting the impact of building blocks, surface interactions, and Gibbs free energy on the assembly process. We systematically examine three methods of guiding facet-controlled MOF assembly, including spontaneous assembly, assembly guided by external forces, and assembly through surface modifications. Lastly, we offer outlooks on future advancements in the fabrication of MOF-based material and potential application exploration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA