Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(22): 15411-15419, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38780106

RESUMEN

Tuning the properties of materials by using external stimuli is crucial for developing versatile smart materials. Strong coupling among the order parameters within a single-phase material constitutes a potent foundation for achieving precise property control. However, cross-coupling is fairly weak in most single materials. Leveraging first-principles calculations, we demonstrate a layered mixed anion compound MoBr2O2 that exhibits electric-field switchable spontaneous polarization and ultrastrong coupling between polar distortion and electronic structures as well as optical properties. It offers feasible avenues of achieving tunable Rashba spin-splitting, electrochromism, thermochromism, photochromism, and nonlinear optics by applying an external electric field to a single domain sample and heating, as well as intense light illumination. Additionally, it exhibits an exceptionally large photostrictive effect. These findings not only showcase the feasibility of achieving multiple order parameter coupling within a single material but also pave the way for comprehensive applications based on property control, such as energy harvesting, information processing, and ultrafast control.

2.
J Am Chem Soc ; 146(35): 24377-24388, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39163211

RESUMEN

Chiral hybrid organic-inorganic metal halides are highly promising chiroptoelectronic materials with potential applications in several fields, such as circularly polarized photodetectors, second-order nonlinear optics, and spin-selective devices. However, the ability of manipulating the chiroptical response and the chirality transfer from the organic ligands require one to shed light on structure-property correlations. Herein, we devised and prepared two novel Ge-based chiral hybrid organic-inorganic metal halides showing a different structural topology, namely, a 1D and a 2D arrangement, but composed of the same chemical building blocks: (R/S-ClMBA)3GeI5 and (R/S-ClMBA)2GeI4. Through a combined experimental and computational investigation on these samples, we discuss the impact of structural dimensionality on chiroptical properties, chirality transfer, and spin-splitting effects; also, we highlight the impact of structural distortions. The approach presented here paves the way for a solid understanding of the factors affecting the properties of chiral metal halides, thus allowing a future wise materials engineering.

3.
J Am Chem Soc ; 146(1): 1174-1184, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38153040

RESUMEN

Controlling multimetallic ensembles at the atomic level is significantly challenging, particularly for high-entropy alloys with more than five elements. Herein, we report an innovative ultrasmall (∼2 nm) PtFeCoNiCuZn high-entropy intermetallic (PFCNCZ-HEI) with a well-ordered structure synthesized by using the space-confined strategy. By exploiting these combined metals, the PFCNCZ-HEI nanoparticles achieve an ultrahigh mass activity of 2.403 A mgPt-1 at 0.90 V vs reversible hydrogen electrode for the oxygen reduction reaction, which is up to 19-fold higher than that of state-of-the-art commercial Pt/C. A proton exchange membrane fuel cell assembled with PFCNCZ-HEI as the cathode (0.03 mgPt cm-2) exhibits a power density of 1.4 W cm-2 and a high mass-normalized rated power of 45 W mgPt-1. Furthermore, theoretical calculations reveal that the outer electrons of the non-noble-metal atoms on the surface of the PFCNCZ-HEI nanoparticle are modulated to show characteristics of multiple active centers. This work offers a promising catalyst design direction for developing highly ordered HEI nanoparticles for electrocatalysis.

4.
Cancer ; 130(3): 400-409, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37864520

RESUMEN

BACKGROUND: Immune checkpoint blockade has shown mixed results in advanced/recurrent gynecologic malignancies. Efficacy may be improved through costimulation with OX40 and 4-1BB agonists. The authors sought to evaluate the safety and efficacy of avelumab combined with utomilumab (a 4-1BB agonist), PF-04518600 (an OX40 agonist), and radiotherapy in patients with recurrent gynecologic malignancies. METHODS: The primary end point in this six-arm, phase 1/2 trial was safety of the combination regimens. Secondary end points included the objective response rate (ORR) according to Response Evaluation Criteria in Solid Tumors and immune-related Response Evaluation Criteria in Solid Tumors, the disease control rate (DCR), the duration of response, progression-free survival, and overall survival. RESULTS: Forty patients were included (35% with cervical cancer, 30% with endometrial cancer, and 35% with ovarian cancer). Most patients (n = 33; 83%) were enrolled in arms A-C (no radiation). Among 35 patients who were evaluable for efficacy, the ORR was 2.9%, and the DCR was 37.1%, with a median duration of stable disease of 5.4 months (interquartile range, 4.1-7.3 months). Patients with cervical cancer in arm A (avelumab and utomilumab; n = 9 evaluable patients) achieved an ORR of 11% and a DCR of 78%. The median progression-free survival was 2.1 months (95% CI, 1.8-3.5 months), and overall survival was 9.4 months (95% CI, 5.6-11.9 months). No dose-limiting toxicities or grade 3-5 immune-related adverse events were observed. CONCLUSIONS: The findings from this trial highlight that, in heavily pretreated patients with gynecologic cancer, even multidrug regimens targeting multiple immunologic pathways, although safe, did not produce significant responses. A DCR of 78% in patients with cervical cancer who received avelumab and utomilumab indicates that further research on this combination in select patients may be warranted.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neoplasias de los Genitales Femeninos , Inmunoglobulina G , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias de los Genitales Femeninos/tratamiento farmacológico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
5.
Glob Chang Biol ; 30(5): e17302, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38699927

RESUMEN

Climate-smart agriculture (CSA) supports the sustainability of crop production and food security, and benefiting soil carbon storage. Despite the critical importance of microorganisms in the carbon cycle, systematic investigations on the influence of CSA on soil microbial necromass carbon and its driving factors are still limited. We evaluated 472 observations from 73 peer-reviewed articles to show that, compared to conventional practice, CSA generally increased soil microbial necromass carbon concentrations by 18.24%. These benefits to soil microbial necromass carbon, as assessed by amino sugar biomarkers, are complex and influenced by a variety of soil, climatic, spatial, and biological factors. Changes in living microbial biomass are the most significant predictor of total, fungal, and bacterial necromass carbon affected by CSA; in 61.9%-67.3% of paired observations, the CSA measures simultaneously increased living microbial biomass and microbial necromass carbon. Land restoration and nutrient management therein largely promoted microbial necromass carbon storage, while cover crop has a minor effect. Additionally, the effects were directly influenced by elevation and mean annual temperature, and indirectly by soil texture and initial organic carbon content. In the optimal scenario, the potential global carbon accrual rate of CSA through microbial necromass is approximately 980 Mt C year-1, assuming organic amendment is included following conservation tillage and appropriate land restoration. In conclusion, our study suggests that increasing soil microbial necromass carbon through CSA provides a vital way of mitigating carbon loss. This emphasizes the invisible yet significant influence of soil microbial anabolic activity on global carbon dynamics.


Asunto(s)
Agricultura , Carbono , Cambio Climático , Microbiología del Suelo , Suelo , Agricultura/métodos , Carbono/análisis , Carbono/metabolismo , Suelo/química , Biomasa , Ciclo del Carbono , Hongos , Bacterias/metabolismo
6.
Eur J Clin Microbiol Infect Dis ; 43(1): 139-153, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985551

RESUMEN

PURPOSE: The extensive use of vancomycin has led to the development of Staphylococcus aureus strains with varying degrees of resistance to vancomycin. The present study aimed to explore the molecular causes of vancomycin resistance by conducting a proteomics analysis of subcellular fractions isolated from vancomycin-intermediate resistant S. aureus (VISA) and vancomycin-sensitive S. aureus (VSSA) strains. METHODS: We conducted proteomics analysis of subcellular fractions isolated from 2 isogenic S. aureus strains: strain 11 (VSSA) and strain 11Y (VISA). We used an integrated quantitative proteomics approach assisted by bioinformatics analysis, and comprehensively investigated the proteome profile. Intensive bioinformatics analysis, including protein annotation, functional classification, functional enrichment, and functional enrichment-based cluster analysis, was used to annotate quantifiable targets. RESULTS: We identified 128 upregulated proteins and 21 downregulated proteins in strain 11Y as compared to strain 11. The largest group of differentially expressed proteins was composed of enzymatic proteins associated with metabolic and catalytic activity, which accounted for 32.1% and 50% of the total proteins, respectively. Some proteins were indispensable parts of the regulatory networks of S. aureus that were altered with vancomycin treatment, and these proteins were related to cell wall metabolism, cell adhesion, proteolysis, and pressure response. CONCLUSION: Our proteomics study revealed regulatory proteins associated with vancomycin resistance in S. aureus. Some of these proteins were involved in the regulation of cell metabolism and function, which provides potential targets for the development of strategies to manage vancomycin resistance in S. aureus.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/genética , Vancomicina/farmacología , Vancomicina/uso terapéutico , Proteómica , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana
7.
Nano Lett ; 23(4): 1273-1279, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36729943

RESUMEN

Regulating the magnetic properties of multiferroics lays the foundation for their prospective application in spintronic devices. Single-phase multiferroics, such as rare-earth ferrites, are promising candidates; however, they typically exhibit weak magnetism at room temperature (RT). Here, we significantly boosted the RT ferromagnetism of a representative ferrite, EuFeO3, by oxygen defect engineering. Polarized neutron reflectometry and magnetometry measurements reveal that saturation magnetization reaches 0.04 µB/Fe, which is approximately 5 times higher than its bulk phase. Combining the annular bright-field images with theoretical assessment, we unravel the underlying mechanism for magnetic enhancement, in which the decrease in Fe-O-Fe bond angles caused by oxygen vacancies (VO) strengthens magnetic interactions and tilts Fe spins. Furthermore, the internal relationship between magnetism and VO was established by illustrating how the magnetic structure and magnitude change with VO configuration and concentration. Our strategy for regulating magnetic properties can be applied to numerous functional oxide materials.

8.
J Am Chem Soc ; 145(46): 25357-25364, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37948323

RESUMEN

The demand for high-density storage is urgent in the current era of data explosion. Recently, several single-molecule (-atom) magnets and ferroelectrics have been reported to be promising candidates for high-density storage. As another promising candidate, single-molecule multiferroics are not only small in size but also possess ferroelectric and magnetic orderings, which can sometimes be strongly coupled and used as data storage to realize the combination of electric writing and magnetic reading. However, they have been rarely proposed and have never been experimentally reported. Here, by building Hamiltonian models, we propose a new model of single-molecule multiferroics in which electric dipoles and magnetic moments are parallel and can rotate with the rotation of the single molecule. Furthermore, by performing spin-lattice dynamics simulations, we reveal the conditions (e.g., large enough single-ion anisotropy and an appropriate electric field) under which the new single-molecule multiferroic can arise. Based on this model, as well as first-principles calculations, a realistic example of Co(NH3)4N@SWCNT is constructed and numerically confirmed to demonstrate the feasibility of the new single-molecule multiferroic model. Our work not only sheds light on the discovery of single-molecule multiferroics but also provides a new guideline to design multifunctional materials for ultimate memory devices.

9.
J Am Chem Soc ; 145(25): 14044-14051, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37315326

RESUMEN

Ferroelectricity in two-dimensional hybrid (2D) organic-inorganic perovskites (HOIPs) can be engineered by tuning the chemical composition of the organic or inorganic components to lower the structural symmetry and order-disorder phase change. Less efforts are made toward understanding how the direction of the polar axis is affected by the chemical structure, which directly impacts the anisotropic charge order and nonlinear optical response. To date, the reported ferroelectric 2D Dion-Jacobson (DJ) [PbI4]2- perovskites exhibit exclusively out-of-plane polarization. Here, we discover that the polar axis in ferroelectric 2D Dion-Jacobson (DJ) perovskites can be tuned from the out-of-plane (OOP) to the in-plane (IP) direction by substituting the iodide with bromide in the lead halide layer. The spatial symmetry of the nonlinear optical response in bromide and iodide DJ perovskites was probed by polarized second harmonic generation (SHG). Density functional theory calculations revealed that the switching of the polar axis, synonymous with the change in the orientation of the sum of the dipole moments (DMs) of organic cations, is caused by the conformation change of organic cations induced by halide substitution.

10.
J Neuroinflammation ; 20(1): 94, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069636

RESUMEN

BACKGROUND: The cholinergic anti-inflammatory pathway (CAP) has been widely studied to modulate the immune response. Current stimulating strategies are invasive or imprecise. Noninvasive low-intensity pulsed ultrasound (LIPUS) has become increasingly appreciated for targeted neuronal modulation. However, its mechanisms and physiological role on myocarditis remain poorly defined. METHODS: The mouse model of experimental autoimmune myocarditis was established. Low-intensity pulsed ultrasound was targeted at the spleen to stimulate the spleen nerve. Under different ultrasound parameters, histological tests and molecular biology were performed to observe inflammatory lesions and changes in immune cell subsets in the spleen and heart. In addition, we evaluated the dependence of the spleen nerve and cholinergic anti-inflammatory pathway of low-intensity pulsed ultrasound in treating autoimmune myocarditis in mice through different control groups. RESULTS: The echocardiography and flow cytometry of splenic or heart infiltrating immune cells revealed that splenic ultrasound could alleviate the immune response, regulate the proportion and function of CD4+ Treg and macrophages by activating cholinergic anti-inflammatory pathway, and finally reduce heart inflammatory injury and improve cardiac remodeling, which is as effective as an acetylcholine receptor agonists GTS-21. Transcriptome sequencing showed significant differential expressed genes due to ultrasound modulation. CONCLUSIONS: It is worth noting that the ultrasound therapeutic efficacy depends greatly on acoustic pressure and exposure duration, and the effective targeting organ was the spleen but not the heart. This study provides novel insight into the therapeutic potentials of LIPUS, which are essential for its future application.


Asunto(s)
Miocarditis , Animales , Ratones , Miocarditis/terapia , Miocarditis/patología , Bazo/patología , Ultrasonografía , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA