Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biochem Biophys Res Commun ; 721: 150145, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38795633

RESUMEN

Itch, a common somatic sensation, serves as a crucial protective system. Recent studies have unraveled the neural mechanisms of itch at peripheral, spinal cord as well as cerebral levels. However, a comprehensive understanding of the central mechanism governing itch transmission and regulation remains elusive. Here, we report the role of the medial septum (MS), an integral component of the basal forebrain, in modulating the acute itch processing. The increases in c-Fos+ neurons and calcium signals within the MS during acute itch processing were observed. Pharmacogenetic activation manipulation of global MS neurons suppressed the scratching behaviors induced by chloroquine or compound 48/80. Microinjection of GABA into the MS or pharmacogenetic inhibition of non-GABAergic neurons markedly suppressed chloroquine-induced scratching behaviors. Pharmacogenetic activation of the MS-ACC GABAergic pathway attenuated chloroquine-induced acute itch. Hence, our findings reveal that MS has a regulatory role in the chloroquine-induced acute itch through local increased GABA to inhibit non-GABAergic neurons and the activation of MS-ACC GABAergic pathway.


Asunto(s)
Cloroquina , Giro del Cíngulo , Prurito , Ácido gamma-Aminobutírico , Cloroquina/farmacología , Animales , Prurito/inducido químicamente , Prurito/metabolismo , Prurito/tratamiento farmacológico , Masculino , Ácido gamma-Aminobutírico/metabolismo , Giro del Cíngulo/metabolismo , Giro del Cíngulo/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones , Núcleos Septales/metabolismo , Núcleos Septales/efectos de los fármacos
2.
Acta Pharmacol Sin ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284878

RESUMEN

Chronic itch is a maladaptive and debilitating symptom in patients with allergic contact dermatitis (ACD), adversely affecting their quality of life. There is a lack of effective treatments for ACD-associated uncontrollable itch. In this study, we explored the antipruritic effects of baicalein (BE), a bioactive flavonoid extracted from the root of Scutellaria baicalensis Georgi, and the underlying mechanisms in alleviating chronic itch triggered by diphenylcyclopropenone (DCP) in a mouse model of ACD. The ACD mice were intraperitoneally injected with BE (5, 30, and 60 mg·kg-1·d-1) for 7 days during the DCP challenge phase. The results showed that DCP-treated mice exhibited severe spontaneous scratching behaviors that was reduced after BE injections in a dose-dependent manner accompanied by inhibition of spinal astrocyte activation. We observed that the spinal astrocytic STAT3-LCN2 cascade plays a crucial role in controlling the activation of astrocytes in chronic itch. Intrathecal injection of the STAT3 inhibitor AG490 or Lcn2 siRNA significantly reduced scratching behavior and astrocyte activation in ACD mice. Moreover, BE markedly attenuated the increased phosphorylation of STAT3 (p-STAT3) and LCN2 expression in the spinal cords of ACD mice and in lipopolysaccharide-stimulated primary spinal astrocytes. Altogether, BE relieved chronic itch by suppressing the spinal astrocytic STAT3-LCN2 cascade. These findings provide a potential avenue for the management of chronic itch. Schematic summary of the main findings illustrating that BE alleviates chronic itch through suppressing the spinal astrocytic STAT3-LCN2 cascade. Specifically, BE suppresses the expression of p-STAT3 to inhibit the reactive state of astrocytes in spinal dorsal horn, and then decreases the expression of astrocytic LCN2 to alleviate chronic itch in ACD mice.

3.
Anesth Analg ; 139(4): 840-850, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38294950

RESUMEN

BACKGROUND: Exercise has been proven to be an efficient intervention in attenuating neuropathic pain. However, the underlying mechanisms that drive exercise analgesia remain unknown. In this study, we aimed to examine the role of complement component 3 (C3) in neuropathic pain and whether antinociceptive effects are produced by exercise via regulating C3 in mice. METHODS: In this study, using a spared nerve injury (SNI)-induced neuropathic pain mice model, C57BL/6J mice were divided into 3 groups: Sham mice, SNI mice, and SNI + Exercise (Ex) mice with 30-minute low-intensity aerobic treadmill running (10 m/min, no inclination). Paw withdrawal threshold; thermal withdrawal latency; and glial fibrillary acidic protein, C3, tumor necrosis factor-α, and interlukin-1ß expression in the spinal cord were monitored. C3 knockout (KO) mice were further used to verify the role of C3 in neuropathic pain. RESULTS: von Frey test, acetone test, and CatWalk gait analysis revealed that treadmill exercise for 4 weeks reversed pain behaviors. In addition, exercise reduced astrocyte reactivity (SNI mean = 14.5, 95% confidence interval [CI], 12.7-16.3; SNI + Ex mean = 10.3, 95% CI, 8.77-11.9, P = .0003 SNI + Ex versus SNI) and inflammatory responses in the spinal cord after SNI. Moreover, it suppressed the SNI-induced upregulation of C3 expression in the spinal cord (SNI mean = 5.46, 95% CI, 3.39-7.53; SNI + Ex mean = 2.41, 95% CI, 1.42-3.41, P = .0054 SNI + Ex versus SNI in Western blot). C3 deficiency reduced SNI-induced pain and spinal astrocyte reactivity (wild type mean = 7.96, 95% CI, 6.80-9.13; C3 KO mean = 5.98, 95% CI, 5.14-6.82, P = .0052 C3 KO versus wild type). Intrathecal injection of recombinant C3 (rC3) was sufficient to produce mechanical (rC3-Ex mean = 0.77, 95% CI, 0.15-1.39; rC3 mean = 0.18, 95% CI, -0.04 to 0.41, P = .0168 rC3-Ex versus rC3) and cold (rC3-Ex mean = 1.08, 95% CI, 0.40-1.77; rC3 mean = 3.46, 95% CI, 1.45-5.47, P = .0025 rC3-Ex versus rC3) allodynia in mice. Importantly, exercise training relieved C3-induced mechanical and cold allodynia, and the analgesic effect of exercise was attenuated by a subeffective dose of intrathecal injection of C3. CONCLUSIONS: Overall, these results suggest that exercise suppresses neuropathic pain by regulating astroglial C3 expression and function, thereby providing a rationale for the analgesic effect of exercise as an acceptable alternative approach for treating neuropathic pain.


Asunto(s)
Astrocitos , Complemento C3 , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia , Condicionamiento Físico Animal , Animales , Neuralgia/metabolismo , Neuralgia/terapia , Neuralgia/fisiopatología , Astrocitos/metabolismo , Complemento C3/metabolismo , Complemento C3/genética , Ratones , Masculino , Condicionamiento Físico Animal/fisiología , Condicionamiento Físico Animal/métodos , Modelos Animales de Enfermedad , Umbral del Dolor , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Hiperalgesia/terapia , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Terapia por Ejercicio/métodos
4.
Behav Brain Res ; 471: 115075, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-38815698

RESUMEN

BACKGROUND: The periaqueductal gray (PAG) plays a well-established pivotal role in the descending pain modulatory circuit. The objective of this study was to investigate morphological changes in the astroglia in models that are commonly used in pain and itch studies. METHODS: Five different mouse models of pain, as well as two models of chronic itch, were established using complete Freund's adjuvant (CFA), spared nerve injury (SNI), bone cancer pain (BCP), cisplatin (CIS), and paclitaxel (PTX) for pain, and diphenylcyclopropenone (DCP) and acetone and diethyl ether followed by water (AEW) for chronic itch. von Frey tests and video recordings were employed to assess pain and itching behaviors. The immunofluorescence of S100ß, pSTAT3, and glial fibrillary acidic protein (GFAP) was examined. Two- and three-dimensional studies were used to evaluate changes in astrocyte morphology. RESULTS: Significant scratching was caused by DCP and AEW, whereas the administration of CFA, SNI, BCP, CIS, and PTX produced clear mechanical allodynia. The expression of GFAP in the lPAG/vlPAG was upregulated in CFA, SNI, BCP, CIS, PTX, and DCP mice but decreased in AEW mice. According to Sholl analysis, CFA, SNI, PTX, and BCP mice showed substantially higher astrocyte intersections in the vlPAG, whereas CFA, SNI, BCP, CIS, and DCP mice presented longer peak lengths. In three-dimensional analysis, CFA, SNI, PTX, and DCP mice showed increased astrocyte surface areas, while CIS and AEW mice showed both reduced surface areas and/or volumes of astrocytes. CONCLUSION: The findings showed that different pain and itching conditions have different astrocyte morphologies, and these variations in morphological changes help to explain the pathophysiology of these conditions.


Asunto(s)
Astrocitos , Modelos Animales de Enfermedad , Dolor , Sustancia Gris Periacueductal , Prurito , Animales , Astrocitos/patología , Astrocitos/metabolismo , Sustancia Gris Periacueductal/metabolismo , Sustancia Gris Periacueductal/patología , Prurito/patología , Prurito/fisiopatología , Masculino , Dolor/patología , Dolor/fisiopatología , Dolor/metabolismo , Ratones , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones Endogámicos C57BL , Hiperalgesia/patología , Hiperalgesia/fisiopatología
5.
Pain ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39132923

RESUMEN

ABSTRACT: Cold allodynia is a common complaint of patients suffering from neuropathic pain initiated by peripheral nerve injury. However, the mechanisms that drive neuropathic cold pain remain elusive. In this study, we show that the interleukin (IL)-33/ST2 signaling in the dorsal root ganglion (DRG) is a critical contributor to neuropathic cold pain by interacting with the cold sensor transient receptor potential melastatin 8 (TRPM8). By using the St2-/- mice, we demonstrate that ST2 is required for the generation of nociceptor hyperexcitability and cold allodynia in a mouse model of spared nerve injury (SNI). Moreover, the selective elimination of ST2 function from the Nav1.8-expressing nociceptor markedly suppresses SNI-induced cold allodynia. Consistent with the loss-of-function studies, intraplantar injection of recombinant IL-33 (rIL-33) is sufficient to induce cold allodynia. Mechanistically, ST2 is co-expressed with TRPM8 in both mouse and human DRG neurons and rIL-33-induced Ca2+ influx in mouse DRG neurons through TRPM8. Co-immunoprecipitation assays further reveal that ST2 interacts with TRPM8 in DRG neurons. Importantly, rIL-33-induced cold allodynia is abolished by pharmacological inhibition of TRPM8 and genetic ablation of the TRPM8-expressing neurons. Thus, our findings suggest that the IL-33/ST2 signaling mediates neuropathic cold pain through downstream cold-sensitive TRPM8 channels, thereby identifying a potential analgesic target for the treatment of neuropathic cold pain.

6.
Eur J Pharmacol ; 960: 176147, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37871763

RESUMEN

Although pruritus, commonly known as itch, is a common and debilitating symptom associated with various skin conditions, there is a lack of effective therapies available. Xanthotoxol (XAN), a biologically active linear furocoumarin, shows potential in the treatment of various neurological disorders. In this study, we discovered that administering XAN either through intraperitoneal or intrathecal injections effectively reduced scratching behavior induced by compound 48/80 or chloroquine. Importantly, XAN also substantially alleviates chronic itch in dry skin and allergic contact dermatitis mice. Substantial progress has highlighted the crucial role of gastrin-releasing peptide (GRP)-gastrin-releasing peptide receptor (GRPR) signaling in the dorsal spinal cord in transmitting various types of itch. Our behavior tests revealed that XAN significantly alleviated scratching behaviors induced by intrathecal administration of GRP or GRPR agonist bombesin. Furthermore, XAN reduced the activation of neurons in the spinal cord caused by intrathecal administration of GRP in mice. Moreover, XAN attenuates the activation of spinal GRPR-positive neurons in itchy mice. These findings suggest that XAN mitigates itch in mice by suppressing spinal GRP/GRPR signaling, thereby establishing XAN as a promising therapeutic option for treating pruritus.


Asunto(s)
Furocumarinas , Receptores de Bombesina , Animales , Ratones , Furocumarinas/farmacología , Furocumarinas/uso terapéutico , Péptido Liberador de Gastrina/farmacología , Péptido Liberador de Gastrina/fisiología , Ratones Endogámicos C57BL , Prurito/tratamiento farmacológico , Prurito/inducido químicamente , Receptores de Bombesina/metabolismo , Médula Espinal
7.
Phytomedicine ; 119: 154969, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37516088

RESUMEN

BACKGROUND AND PURPOSE: Itch (pruritus) is a common unpleasant feeling, often accompanied by the urge of scratching the skin. It is the main symptom of many systemic and skin diseases, which can seriously affect the patient's quality of life. Geraniol (GE; trans-3,7-dimethyl-2,6-octadien-1-ol) is a natural monoterpene with diverse effects, including anti-inflammatory, antioxidant, neuroprotective, anti-nociceptive, and anticancer properties. The study aims to examine the effects of GE on acute and chronic itch, and explore the underlying mechanisms. METHODS: Acute itch was investigated by using Chloroquine and compound 48/80 induced model, followed by manifestation of diphenylcyclopropenone (DCP)-induced allergic contact dermatitis and the acetone-ether-water (AEW)-induced dry skin model in mice. The scratching behavior, skin thickness, c-Fos expression, and GRPR protein expression in the spinal cord were subsequently monitored and evaluated by behavioral tests as well as pharmacological and pharmacogenetic technologies. RESULTS: Dose-dependent intraperitoneal injection of GE alleviated the acute itch, induced by chloroquine and compound 48/80, as well as increased the spinal c-Fos expression. Intrathecal administration of GE suppressed the GABAA receptor inhibitor bicuculline-induced itch, GRP-induced itch, and the GABAergic neuron inhibition-induced itch. Furthermore, the subeffective dose of bicuculline blocked the anti-pruritic effect of GE on the chloroquine and compound 48/80 induced acute itch. GE also attenuated DCP and AEW-induced chronic itch, as well as the increase of spinal GRPR expression in DCP mice. CONCLUSION AND IMPLICATIONS: GE alleviates both acute and chronic itch via modulating the spinal GABA/GRPR signaling in mice. Findings of this study reveal that GE may provide promising therapeutic options for itch management. Also, considering the pivotal role of essential oils in aromatherapy, GE has great application potential in aromatherapy for treating skin diseases, and especially the skin with severe pruritus.


Asunto(s)
Antipruriginosos , Calidad de Vida , Ratones , Animales , Antipruriginosos/efectos adversos , Péptido Liberador de Gastrina/metabolismo , Péptido Liberador de Gastrina/farmacología , Bicuculina/efectos adversos , Bicuculina/metabolismo , Prurito/inducido químicamente , Prurito/tratamiento farmacológico , Médula Espinal , Cloroquina/farmacología , Ácido gamma-Aminobutírico/metabolismo
8.
Phytomedicine ; 98: 153965, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35144136

RESUMEN

BACKGROUND: Plant extracts with sedative effects have a long history of clinical use for treating insomnia and epilepsy. Geraniol (GE), a plant-derived acyclic monoterpene, reduces locomotion and prolongs barbiturate-induced anesthesia in rats. However, the mechanisms of GE in sedation remain elusive. PURPOSE: This study aimed to investigate the mechanisms of GE in sedation in mice. METHODS: GE was administered systemically by nebulization and intraperitoneal injection. Open field tests, acute seizure tests, and electroencephalogram (EEG) recordings were performed to examine the sedative effects of GE in mice. The time of loss of the righting reflex and return of the righting reflex were recorded in anesthesia experiments to examine the effect of GE on anesthesia. In vitro c-Fos staining and in vivo fiber photometry recordings were performed to detect the activity change of the paraventricular thalamic nucleus (PVT). Microinjection of GE into PVT and related behavioral tests were performed to confirm that PVT was a critical target for GE. Whole-cell recordings were performed to dissect the effects of GE on PVT neurons via GABAA receptors. Molecular docking was performed to examine the interaction between GE and GABAA receptor subunits. RESULTS: We found that GE reduced locomotion, relieved acute seizures, altered the EEG, and facilitated general anesthesia in mice. Next, we found that GE decreased c-Fos expression and suppressed the calcium activity in PVT. Microinjection of GE into PVT reduced locomotion and facilitated anesthesia. Furthermore, electrophysiology results showed that GE induced dramatic membrane hyperpolarization and suppressed the activity of PVT neurons, mainly by prolonging spontaneous inhibitory postsynaptic currents and inducing tonic inhibitory currents. Molecular docking results indicated that the ß3 subunit might be a potential target for GE. CONCLUSION: By combined using behavioral tests, immunohistochemistry, calcium recording, and electrophysiology, we systematically revealed that GE inhibits PVT and induces sedation in mice. Essential oils have long been considered part of traditional medicine, and they are playing a critical role in aromatherapy. Since GE has a comparatively ideal safety property and multiple delivery methods, GE has great application potential in aromatherapy. Our study also provides a potential candidate for further development of sedatives and anaesthetics.

9.
Integr Cancer Ther ; 20: 15347354211031650, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34261372

RESUMEN

BACKGROUND: Traditional Chinese medicine (TCM) is widely integrated into cancer care in China. An overview in 2011 identified 2384 randomized and non-randomized controlled trials (RCTs, non-RCTs) on TCM for cancer published in the Chinese literature. This article summarizes updated evidence of RCTs on TCM for cancer care. METHODS: We searched 4 main Chinese databases: China National Knowledge Infrastructure, Chinese Scientific Journal Database, SinoMed, and Wanfang. RCTs on TCM used in cancer care were analyzed in this bibliometric study. RESULTS: Of 5834 RCTs (477 157 cancer patients), only 62 RCTs were indexed in MEDLINE. The top 3 cancers treated were lung, stomach, and breast cancer. About 4752 RCTs (81.45%) tested TCM combined with conventional treatment, and 1082 RCTs (18.55%) used TCM alone for treating symptoms and side-effects. Herbal medicine was the most frequently used TCM modality (5087 RCTs; 87.20%). The most frequently reported outcome was symptom improvement (3712 RCTs; 63.63%) followed by quality of life (2725 RCTs; 46.71%), and biomarkers (2384 RCTs; 40.86%). The majority of RCTs (4051; 69.44%) concluded there were beneficial effects using either TCM alone or TCM plus conventional treatment compared with conventional treatment. CONCLUSION: Substantial randomized trials demonstrated different types/stages of cancer were treated by various TCM modalities, alone or in combination with conventional medicine. Further evaluation on the effects and safety of TCM modalities focusing on outcomes such as quality of life is required.


Asunto(s)
Neoplasias de la Mama , Medicamentos Herbarios Chinos , China , Medicamentos Herbarios Chinos/uso terapéutico , Femenino , Humanos , Medicina Tradicional China , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA