Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(5): 2264-2272, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38266388

RESUMEN

Lipid metabolism diseases have become a tremendous risk worldwide, along with the development of productivity and particular attention to public health. It has been an urgent necessity to exploit reliable imaging strategies for lipids and thus to monitor fatty liver diseases. Herein, by converting the NIR-I signal to the NIR-II signal with IR1061 for the monitoring of lipid, the in vivo imaging of fatty liver disease was promoted on the contrast and visual effect. The main advantages of the imaging promotion in this work included a long emission wavelength, rapid response, and high signal-background-ratio (SBR) value. After promoting the NIR-I signal to NIR-II signal, IR1061 achieved higher SBR value and exhibited a dose-dependent fluorescence intensity at 1100 nm along with the increase of the EtOH proportion as well as steady and selective optical responses toward liposomes. IR1061 was further applied in the in vivo imaging of lipid in fatty liver diseases. In spite of the differences in body weight gain and TC level between healthy mice and fatty liver diseases two models, IR1061 achieved high-resolution imaging in the liver region to monitor the fatty liver disease status. This work might be informatic for the clinical diagnosis and therapeutical treatments of fatty liver diseases.


Asunto(s)
Boratos , Metabolismo de los Lípidos , Hepatopatías , Piranos , Animales , Ratones , Imagen Óptica/métodos , Colorantes Fluorescentes , Lípidos
2.
Analyst ; 149(4): 1280-1288, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38226660

RESUMEN

In this work, a fluorescent probe, TPABF-HS, was developed for detecting hydrogen sulfide (H2S) using a human serum albumin (HSA)-binding-based approach for amplifying the fluorescence signal and extending the linear correlation range. Compared to the most recent probes for H2S, the most interesting feature of the detection system developed herein was the especially wide linear range (0-1000 µM (0-100 eq.)), which covered the physiological and pathological levels of H2S. TPABF-HS could be used in applications high sensitivity and selectivity with an LOD value of 0.42 µM. Further, site-competition experiments and molecular docking simulation experiments indicated that signal amplification was realized by the binding of the TPABF fluorophore to the naproxen-binding site of HSA. Moreover, the extension of the measurement span could allow for applications in living cells and Caenorhabditis elegans for imaging both exogenous and endogenous H2S. This work brings new information to the strategy of signal processing by exploiting fluorescent probes.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Humanos , Colorantes Fluorescentes/toxicidad , Colorantes Fluorescentes/química , Sulfuro de Hidrógeno/química , Simulación del Acoplamiento Molecular , Células HeLa , Microscopía Fluorescente
3.
ACS Sens ; 9(2): 962-970, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38293708

RESUMEN

In this work, a photoacoustic (PA) probe, HDS-GGT, was developed for the in vivo imaging of cardiovascular diseases by monitoring the γ-glutamyl transferase (GGT) dynamics. HDS-GGT exhibited a stable PA signal with auxiliary absorbance and NIRF variation after the trigger by GGT. In all three modalities of absorbance, NIRF, and PA, HDS-GGT could quantitatively reflect the GGT level. In PA modality, HDS-GGT indicated the practical advantages including high sensitivity, high stability, and high specificity. In living oxidized low-density lipoprotein-induced RAW264.7 cells, HDS-GGT indicated proper capability for imaging the plaques by visualizing the GGT dynamics. Moreover, during imaging in living model mice, HDS-GGT was achieved to distinguish the plaques from healthy blood vessels via a multiview PA presentation. HDS-GGT could also suggest the severity of plaques in the extracted aorta from the model mice, which was consistent with the histological staining results. The information herein might be useful for future investigations on cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Animales , Ratones , Enfermedades Cardiovasculares/diagnóstico por imagen , gamma-Glutamiltransferasa , Análisis Espectral , Diagnóstico por Imagen
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123763, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38198994

RESUMEN

In this work, we reported a fluorescent probe Fur-SH, a derivative of benzofuranone, which was used to detect H2S in living cells and zebrafish. Based on the three structural characteristics of the probe, the effects of different structural modifications on the optical properties of the fluorophore were compared. Then, the fluorophore Fur-OH was synthesized by modifying diethylamino group with benzofuranone as the main skeleton. With 2,4-dinitrofluorobenzene as the recognition group and diethylamino as the electron donor, the push-pull electron effect occurred with nitro group, which led to fluorescence quenching, and an openable fluorescent probe Fur-SH was formed. The probe Fur-SH (λex = 510 nm; λem = 570 nm) had the advantages of smaller full width at half maxima, rapid response (5 min) and wide pH window. The quantitative properties of the probe were excellent, reaching saturation at 50 equivalents of substrate. The probe Fur-SH showed high sensitivity to H2S, with LOD of 48.9 nM and LOQ of 50 nM. At present, the probe Fur-SH had been applied to fluorescence imaging of MCF-7 cells and zebrafish. By comparing the effects of different structures on the optical properties of fluorophores, this work was expected to be helpful to the development of fluorescent probes in the future.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Humanos , Animales , Colorantes Fluorescentes/química , Pez Cebra , Sulfuro de Hidrógeno/análisis , Mitocondrias/química , Imagen Óptica , Células HeLa
5.
Biomaterials ; 310: 122635, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38810386

RESUMEN

Hepatocellular carcinoma (HCC) seriously threatens the human health. Previous investigations revealed that γ-glutamyltranspeptidase (GGT) was tightly associated with the chronic injury, hepatic fibrosis, and the development of HCC, therefore might act as a potential indicator for monitoring the HCC-related processes. Herein, with the contribution of a structurally optimized probe ETYZE-GGT, the bimodal imaging in both far red fluorescence (FL) and photoacoustic (PA) modes has been achieved in multiple HCC-related models. To our knowledge, this work covered the most comprehensive models including the fibrosis and developed HCC processes as well as the premonitory induction stages (autoimmune hepatitis, drug-induced liver injury, non-alcoholic fatty liver disease). ETYZE-GGT exhibited steady and practical monitoring performances on reporting the HCC stages via visualizing the GGT dynamics. The two modes exhibited working consistency and complementarity with high spatial resolution, precise apparatus and desirable biocompatibility. In cooperation with the existing techniques including testing serum indexes and conducting pathological staining, ETYZE-GGT basically realized the universal application for the accurate pre-clinical diagnosis of as many HCC stages as possible. By deeply exploring the mechanically correlation between GGT and the HCC process, especially during the premonitory induction stages, we may further raise the efficacy for the early diagnosis and treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Técnicas Fotoacústicas , gamma-Glutamiltransferasa , gamma-Glutamiltransferasa/metabolismo , Animales , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Técnicas Fotoacústicas/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Hepatopatías/diagnóstico por imagen , Imagen Óptica/métodos , Ratones , Masculino , Ratones Endogámicos BALB C , Hígado/patología , Hígado/diagnóstico por imagen , Hígado/enzimología , Colorantes Fluorescentes/química
6.
Artículo en Zh | WPRIM | ID: wpr-908753

RESUMEN

The study aimed to achieve enhanced targeted cytotoxicity and cell-internalization of cisplatin-loaded deoxyribonucleic acid-nanothread (CPT-DNA-NT),mediated by scavenger receptors into HeLa cells.DNA-NT was developed with stiff-topology utilizing circular-scaffold to encapsulate CPT.Atomic force microscopy (AFM) characterization of the DNA-NT showed uniformity in the structure with a diameter of 50-150 nm and length of 300-600 nm.The successful fabrication of the DNA-NT was confirmed through native-polyacrylamide gel electrophoresis analysis,as large the molecular-weight (polymeric) DNA-NT did not split into constituting strands under applied current and voltage.The results of cell viability confirmed that blank DNA-NT had the least cytotoxicity at the highest concentration (512 nM) with a viability of 92% as evidence of its biocompatibility for drug delivery.MTT assay showed superior cyto-toxicity of CPT-DNA-NT than that of the free CPT due to the depot release of CPT after DNA-NT inter-nalization.The DNA-NT exhibited targeted cell internalizations with the controlled intracellular release of CPT (from DNA-NT),as illustrated in confocal images.Therefore,in vitro cytotoxicity assessment through flow cytometry showed enhanced apoptosis (72.7%) with CPT-DNA-NT (compared to free CPT;64.4%).CPT-DNA-NT,being poly-anionic,showed enhanced endocytosis via scavenger receptors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA