Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Genet Med ; 25(2): 100335, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36507973

RESUMEN

The U.S. Food and Drug Administration recently approved lonafarnib as the first treatment for Hutchinson-Gilford progeria syndrome (HGPS) and processing-deficient progeroid laminopathies. This approval was primarily based on a comparison of patients with HGPS treated with lonafarnib in 2 open-label trials with an untreated patient cohort. With up to 11 years of follow-up, it was found that the lonafarnib treated patients with HGPS had a survival benefit of 2.5 years compared with the untreated patients with HGPS. This large treatment effect on the objective endpoint of mortality using a well-matched comparator group mitigated potential sources of bias and together with other evidence, established compelling evidence of a drug effect with benefits that outweighed the risks. This approval is an example of U.S. Food and Drug Administration's regulatory flexibility for a rare disease while ensuring that standards for drug approval are met.


Asunto(s)
Progeria , Estados Unidos , Humanos , Progeria/tratamiento farmacológico , Progeria/genética , Lamina Tipo A/genética , Piperidinas/uso terapéutico , Piridinas/uso terapéutico
2.
J Biomed Sci ; 28(1): 60, 2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34452635

RESUMEN

BACKGROUND: Streptococcus pneumoniae is a common cause of post-influenza secondary bacterial infection, which results in excessive morbidity and mortality. Although 13-valent pneumococcal conjugate vaccine (PCV13) vaccination programs have decreased the incidence of pneumococcal pneumonia, PCV13 failed to prevent serotype 3 pneumococcal disease as effectively as other vaccine serotypes. We aimed to investigate the mechanisms underlying the co-pathogenesis of influenza virus and serotype 3 pneumococci. METHODS: We carried out a genome-wide screening of a serotype 3 S. pneumoniae transposon insertion mutant library in a mouse model of coinfection with influenza A virus (IAV) to identify the bacterial factors required for this synergism. RESULTS: Direct, high-throughput sequencing of transposon insertion sites identified 24 genes required for both coinfection and bacterial infection alone. Targeted deletion of the putative aminotransferase (PA) gene decreased bacterial growth, which was restored by supplementation with methionine. The bacterial burden in a coinfection with the PA gene deletion mutant and IAV in the lung was lower than that in a coinfection with wild-type pneumococcus and IAV, but was significantly higher than that in an infection with the PA gene deletion mutant alone. These data suggest that IAV infection alters host metabolism to benefit pneumococcal fitness and confer higher susceptibility to pneumococcal infection. We further demonstrated that bacterial growth was increased by supplementation with methionine or IAV-infected mouse lung homogenates. CONCLUSIONS: The data indicates that modulation of host metabolism during IAV infection may serve as a potential therapeutic intervention against secondary bacterial infections caused by serotype 3 pneumococci during IAV outbreaks in the future.


Asunto(s)
Coinfección , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/virología , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/genética , Transcriptoma , Animales , Coinfección/microbiología , Coinfección/virología , Femenino , Genoma Bacteriano , Ratones , Ratones Endogámicos BALB C
3.
Clin Infect Dis ; 71(12): 3232-3236, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32435791

RESUMEN

Translation of in vitro antiviral activity to the in vivo setting is crucial to identify potentially effective dosing regimens of hydroxychloroquine. In vitro 50%/90% maximal effective concentration values for hydroxychloroquine should be compared to the in vivo free extracellular tissue concentration, which is similar to the free plasma hydroxychloroquine concentration.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Hidroxicloroquina , Antivirales/uso terapéutico , Humanos , SARS-CoV-2
4.
Oncologist ; 23(12): 1511-1519, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30115735

RESUMEN

In April 2017, the U.S. Food and Drug Administration granted regular approval to midostaurin for the treatment of adult patients with aggressive systemic mastocytosis (ASM), systemic mastocytosis with associated hematological neoplasm (SM-AHN), or mast cell leukemia (MCL). Approval was based on results from CPKC412D2201, a single-arm trial of midostaurin (100 mg orally twice daily) in previously treated or untreated patients. For the patients with ASM and SM-AHN, efficacy was established on the basis of confirmed complete remission (CR) plus incomplete remission (ICR) by modified Valent criteria with six cycles of midostaurin. There were no CRs reported; ICR was achieved by 6 of 16 patients (38%; 95% confidence interval [CI]: 15%-65%) with ASM and by 9 of 57 patients (16%; 95% CI: 7%-28%) with SM-AHN. Within the follow-up period, the median duration of response was not reached for the patients with ASM (range, 12.1+ to 36.8+ months) or with SM-AHN (range, 6.6+ to 52.1+ months). For the patients with MCL, efficacy was established on the basis of confirmed CR using modified 2013 International Working Group-Myeloproliferative Neoplasms Research and Treatment-European Competence Network on Mastocytosis criteria. Of 21 patients with MCL, 1 (5%) achieved a CR. Of 142 patients with SM evaluated for safety, 56% had dose modifications for toxicity, and 21% discontinued treatment due to a toxicity. Over 50% reported nausea, vomiting, or diarrhea, and ≥30% reported edema, musculoskeletal pain, fatigue, abdominal pain, or upper respiratory tract infection. New or worsening grade ≥3 lymphopenia, anemia, thrombocytopenia, or neutropenia developed in ≥20%. Although midostaurin is an active drug for treatment of advanced SM, it is not clear that the optimal dose has been identified. IMPLICATIONS FOR PRACTICE: Midostaurin is the only U.S. Food and Drug Administration-approved therapy for patients with systemic mastocytosis with associated hematological neoplasm and mast cell leukemia and is the only therapy approved for patients with aggressive systemic mastocytosis regardless of KIT D816V mutation status. Based on response rate and duration, midostaurin has meaningful clinical activity in these rare, life-threatening diseases.


Asunto(s)
Antineoplásicos/uso terapéutico , Mastocitosis Sistémica/tratamiento farmacológico , Estaurosporina/análogos & derivados , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Mastocitosis Sistémica/patología , Persona de Mediana Edad , Estaurosporina/farmacología , Estaurosporina/uso terapéutico , Estados Unidos , United States Food and Drug Administration
5.
N Engl J Med ; 370(5): 412-20, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24382002

RESUMEN

BACKGROUND: Sclerostin is an osteocyte-derived inhibitor of osteoblast activity. The monoclonal antibody romosozumab binds to sclerostin and increases bone formation. METHODS: In a phase 2, multicenter, international, randomized, placebo-controlled, parallel-group, eight-group study, we evaluated the efficacy and safety of romosozumab over a 12-month period in 419 postmenopausal women, 55 to 85 years of age, who had low bone mineral density (a T score of -2.0 or less at the lumbar spine, total hip, or femoral neck and -3.5 or more at each of the three sites). Participants were randomly assigned to receive subcutaneous romosozumab monthly (at a dose of 70 mg, 140 mg, or 210 mg) or every 3 months (140 mg or 210 mg), subcutaneous placebo, or an open-label active comparator--oral alendronate (70 mg weekly) or subcutaneous teriparatide (20 µg daily). The primary end point was the percentage change from baseline in bone mineral density at the lumbar spine at 12 months. Secondary end points included percentage changes in bone mineral density at other sites and in markers of bone turnover. RESULTS: All dose levels of romosozumab were associated with significant increases in bone mineral density at the lumbar spine, including an increase of 11.3% with the 210-mg monthly dose, as compared with a decrease of 0.1% with placebo and increases of 4.1% with alendronate and 7.1% with teriparatide. Romosozumab was also associated with large increases in bone mineral density at the total hip and femoral neck, as well as transitory increases in bone-formation markers and sustained decreases in a bone-resorption marker. Except for mild, generally nonrecurring injection-site reactions with romosozumab, adverse events were similar among groups. CONCLUSIONS: In postmenopausal women with low bone mass, romosozumab was associated with increased bone mineral density and bone formation and with decreased bone resorption. (Funded by Amgen and UCB Pharma; ClinicalTrials.gov number, NCT00896532.).


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Conservadores de la Densidad Ósea/administración & dosificación , Densidad Ósea/efectos de los fármacos , Remodelación Ósea/efectos de los fármacos , Osteoporosis Posmenopáusica/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Alendronato/farmacología , Alendronato/uso terapéutico , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacología , Biomarcadores/metabolismo , Conservadores de la Densidad Ósea/efectos adversos , Conservadores de la Densidad Ósea/farmacología , Calcio/sangre , Esquema de Medicación , Femenino , Humanos , Inyecciones Subcutáneas , Análisis de los Mínimos Cuadrados , Vértebras Lumbares/efectos de los fármacos , Persona de Mediana Edad , Teriparatido/farmacología , Teriparatido/uso terapéutico
6.
Regul Toxicol Pharmacol ; 74 Suppl: S1-13, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26724268

RESUMEN

There are currently seven published physiologically based pharmacokinetic (PBPK) models describing aspects of the pharmacokinetics of octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) for various exposure routes in rat and human. Each model addressed the biological and physico-chemical properties of D4 and D5 (highly lipophilic coupled with low blood: air partition coefficient and high liver clearance) that result in unique kinetic behaviors as well differences between D4 and D5. However, the proliferation of these models resulted in challenges for various risk assessment applications when needing to determine the optimum model for estimating dose metrics. To enhance the utility of these PBPK models for risk assessment, we integrated the suite of structures into one coherent model capable of simulating the entire set of existing data equally well as older more limited scope models. In this paper, we describe the steps required to develop this integrated model, the choice of physiological, partitioning and biochemical parameters for the model, and the concordance of the model behavior across key data sets. This integrated model is sufficiently robust to derive relevant dose metrics following individual or combined dermal and inhalation exposures of workers, consumer or the general population to D4 and D5 for route-to-route, interspecies and high to low dose extrapolations for risk assessment.


Asunto(s)
Modelos Biológicos , Siloxanos/farmacocinética , Tejido Adiposo/metabolismo , Animales , Femenino , Humanos , Exposición por Inhalación , Hígado/metabolismo , Masculino , Ratas , Medición de Riesgo , Piel/metabolismo , Distribución Tisular , Volatilización
7.
Sensors (Basel) ; 14(2): 2967-80, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24531300

RESUMEN

Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 µg/mL and 0.05 µg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

8.
Clin Cancer Res ; 30(1): 17-22, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-37624619

RESUMEN

In January 2023, the FDA granted accelerated approval to pirtobrutinib for the treatment of adult patients with relapsed or refractory mantle cell lymphoma (MCL) after at least two lines of systemic therapy, including a Bruton tyrosine kinase (BTK) inhibitor. Approval was based on BRUIN, a single-arm study of pirtobrutinib monotherapy in patients with B-cell malignancies. Efficacy was based on independent review committee-assessed overall response rate (ORR) supported by durability of response in 120 patients with relapsed or refractory MCL who had received a prior BTK inhibitor and received the approved pirtobrutinib dosage of 200 mg once daily. The ORR was 50% [95% confidence interval (CI), 41-59], and the complete response rate was 13% (95% CI, 7-20), with an estimated median duration of response of 8.3 months. The most common nonhematologic adverse reactions were fatigue, musculoskeletal pain, diarrhea, edema, dyspnea, pneumonia, and bruising. Warnings and Precautions in labeling include infection, hemorrhage, cytopenias, atrial arrhythmias, and second primary malignancies. Postmarketing studies were required to evaluate longer-term safety of pirtobrutinib and to verify the clinical benefit of pirtobrutinib. This article summarizes key aspects of the regulatory review, including the indication statement, efficacy and safety considerations, and postmarketing requirements.


Asunto(s)
Linfoma de Células del Manto , Adulto , Humanos , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/patología , Pirazoles/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Fatiga/inducido químicamente
9.
Clin Cancer Res ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809262

RESUMEN

On November 8, 2023, the FDA approved fruquintinib, an inhibitor of vascular endothelial growth factor receptors (VEGFR)-1, -2, and -3, for the treatment of patients with metastatic colorectal cancer (mCRC) who have been previously treated with fluoropyrimidine­, oxaliplatin­, and irinotecan­based chemotherapy, an anti­VEGF therapy, and, if RAS wild­type and medically appropriate, an anti EGFR therapy. Approval was based on Study FRESCO-2, a globally-conducted, double-blind, placebo-controlled randomized trial. The primary endpoint was overall survival (OS). The key secondary endpoint was progression-free survival (PFS). A total of 691 patients were randomized (461 and 230 into the fruquintinib and placebo arms, respectively). Fruquintinib provided a statistically significant improvement in OS with a hazard ratio (HR) of 0.66 (95% CI: 0.55, 0.80; p<0.001). The median OS was 7.4 months (95% CI: 6.7, 8.2) in the fruquintinib arm and 4.8 months (95% CI: 4.0, 5.8) for the placebo arm. Adverse events observed were generally consistent with the known safety profile associated with inhibition of the VEGFR. The results of FRESCO-2 were supported by the FRESCO study, a double-blind, single country, placebo-controlled, randomized trial in patients with refractory mCRC who have been previously treated with fluoropyrimidine­, oxaliplatin­, and irinotecan­based chemotherapy. In FRESCO, the OS HR was 0.65 (95% CI: 0.51, 0.83; p<0.001). FDA concluded that the totality of the evidence from FRESCO-2 and FRESCO supported an indication for patients with mCRC with prior treatment with fluoropyrimidine, oxaliplatin-, and irinotecan-based chemotherapy, an anti-VEGF biological therapy, and if RAS wild­type and medically appropriate, an anti-EGFR therapy.

10.
J Clin Pharmacol ; 63 Suppl 2: S65-S77, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37942906

RESUMEN

Obesity, which is defined as having a body mass index of 30 kg/m2 or greater, has been recognized as a serious health problem that increases the risk of many comorbidities (eg, heart disease, stroke, and diabetes) and mortality. The high prevalence of individuals who are classified as obese calls for additional considerations in clinical trial design. Nevertheless, gaining a comprehensive understanding of how obesity affects the pharmacokinetics (PK), pharmacodynamics (PD), and efficacy of drugs proves challenging, primarily as obese patients are seldom selected for enrollment at the early stages of drug development. Over the past decade, model-informed drug development (MIDD) approaches have been increasingly used in drug development programs for obesity and its related diseases as they use and integrate all available sources and knowledge to inform and facilitate clinical drug development. This review summarizes the impact of obesity on PK, PD, and the efficacy of drugs and, more importantly, provides an overview of the use of MIDD approaches in drug development and regulatory decision making for patients with obesity: estimating PK, PD, and efficacy in specific dosing scenarios, optimizing dose regimen, and providing evidence for seeking new indication(s). Recent review cases using MIDD approaches to support dose selection and provide confirmatory evidence for effectiveness for patients with obesity, including pediatric patients, are discussed. These examples demonstrate the promise of MIDD as a valuable tool in supporting clinical trial design during drug development and facilitating regulatory decision-making processes for the benefit of patients with obesity.


Asunto(s)
Desarrollo de Medicamentos , Obesidad , Humanos , Niño , Obesidad/tratamiento farmacológico , Índice de Masa Corporal , Protocolos Clínicos
11.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 610-618, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36597353

RESUMEN

This workshop report summarizes the presentations and panel discussion related to the use of physiologically based pharmacokinetic (PBPK) modeling approaches for food effect assessment, collected from Session 2 of Day 2 of the workshop titled "Regulatory Utility of Mechanistic Modeling to Support Alternative Bioequivalence Approaches." The US Food and Drug Administration in collaboration with the Center for Research on Complex Generics organized this workshop where this particular session titled "Oral PBPK for Evaluating the Impact of Food on BE" presented successful cases of PBPK modeling approaches for food effect assessment. Recently, PBPK modeling has started to gain popularity among academia, industries, and regulatory agencies for its potential utility during bioavailability (BA) and/or bioequivalence (BE) studies of new and generic drug products to assess the impact of food on BA/BE. Considering the promises of PBPK modeling in generic drug development, the aim of this workshop session was to facilitate knowledge sharing among academia, industries, and regulatory agencies to understand the knowledge gap and guide the path forward. This report collects and summarizes the information presented and discussed during this session to disseminate the information into a broader audience for further advancement in this area.


Asunto(s)
Modelos Biológicos , Informe de Investigación , Humanos , Equivalencia Terapéutica , Disponibilidad Biológica , Desarrollo de Medicamentos , Medicamentos Genéricos
12.
Microbiol Spectr ; 11(6): e0184023, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37930013

RESUMEN

From 2008 to 2020, the Taiwan National Notifiable Disease Surveillance System database demonstrated that the incidence of non-vaccine serotype 23A invasive pneumococcal disease (IPD) approximately doubled. In this study, 276 non-repetitive pneumococcal clinical isolates were collected from two medical centers in Taiwan between 2019 and 2021. Of these 267 pneumococci, 60 were serotype 23A. Among them, 50 (83%) of serotype 23A isolates belonged to the sequence type (ST) 166 variant of the Spain9V-3 clone. Pneumococcal 23A-ST166 isolates were collected to assess their evolutionary relationships using whole-genome sequencing. All 23A-ST166 isolates were resistant to amoxicillin and meropenem, and 96% harbored a novel combination of penicillin-binding proteins (PBPs) (1a:2b:2x):15:11:299, the newly identified PBP2x-299 in Taiwan. Transformation of the pbp1a, pbp2b, and pbp2x alleles into the ß-lactam-susceptible R6 strain revealed that PBP2x-299 and PBP2b-11 increased the MIC of ceftriaxone and meropenem by 16-fold, respectively. Prediction analysis of recombination sites in PMEN3 descendants (23A-ST166 in Taiwan, 35B-ST156 in the United States, and 11A-ST838/ST6521 in Europe) showed that adaptive evolution involved repeated, selectively favored convergent recombination in the capsular polysaccharide synthesis region, PBPs, murM, and folP genome sites. In the late 13-valent pneumococcal conjugate vaccine era, PMEN3 continuously displayed an evolutionary capacity for global dissemination and persistence, increasing IPD incidence, leading to an offset in the decrease of pneumococcal conjugate vaccine serotype-related diseases, and contributing to high antibiotic resistance. A clonal shift with a highly ß-lactam-resistant non-vaccine serotype 23A, from ST338 to ST166, increased in Taiwan. ST166 is a single-locus variant of the Spain9V-3 clone, which is also called the PMEN3 lineage. All 23A-ST166 isolates, in this study, were resistant to amoxicillin and meropenem, and 96% harbored a novel combination of penicillin-binding proteins (PBPs) (1a:2b:2x):15:11:299. PBP2x-299 and PBP2b-11 contributed to the increasing MIC of ceftriaxone and meropenem, respectively. Prediction analysis of recombination sites in PMEN3 descendants showed that adaptive evolution involved repeated, selectively favored convergent recombination in the capsular polysaccharide synthesis region, PBPs, murM, and folP genome sites. In the late 13-valent pneumococcal conjugate vaccine era, PMEN3 continuously displays the evolutionary capacity for dissemination, leading to an offset in the decrease of pneumococcal conjugate vaccine serotype-related diseases and contributing to high antibiotic resistance.


Asunto(s)
Amoxicilina , Infecciones Neumocócicas , Humanos , Amoxicilina/farmacología , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Meropenem , España/epidemiología , Ceftriaxona , Taiwán/epidemiología , Vacunas Conjugadas/metabolismo , Streptococcus pneumoniae , Infecciones Neumocócicas/epidemiología , Serogrupo , beta-Lactamas , Pruebas de Sensibilidad Microbiana , Genómica , Recombinación Genética , Polisacáridos/metabolismo
13.
Clin Cancer Res ; 29(5): 838-842, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36206041

RESUMEN

On April 17, 2020, the FDA granted accelerated approval to pemigatinib (PEMAZYRE, Incyte Corporation) for the treatment of adults with previously treated, unresectable locally advanced or metastatic cholangiocarcinoma with an FGFR2 fusion or other rearrangement as detected by an FDA-approved test. Approval was based on FIGHT-202 (NCT02924376), a multicenter open-label single-arm trial. Efficacy was based on 107 patients with locally advanced unresectable or metastatic cholangiocarcinoma whose disease had progressed on or after at least one prior therapy and had an FGFR2 gene fusion or rearrangement. Patients received pemigatinib, 13.5 mg orally, once daily for 14 consecutive days, followed by 7 days off therapy. Safety was based on a total of 466 patients, 146 of whom had cholangiocarcinoma and received the recommended dose. Efficacy endpoints were overall response rate (ORR) and duration of response (DOR) determined by an independent review committee using RECIST 1.1. ORR was 36% (95% confidence interval: 27-45). Median DOR was 9.1 months. The most common adverse reactions were hyperphosphatemia, alopecia, diarrhea, nail toxicity, fatigue, dysgeusia, nausea, constipation, stomatitis, dry eye, dry mouth, decreased appetite, vomiting, arthralgia, abdominal pain, hypophosphatemia, back pain, and dry skin. Ocular toxicity and hyperphosphatemia are important risks of pemigatinib. The recommended dosage is 13.5 mg orally once daily for 14 consecutive days followed by 7 days off therapy in 21-day cycles. FDA also approved the FoundationOne CDX (Foundation Medicine, Inc.) as a companion diagnostic for patient selection.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Hiperfosfatemia , Adulto , Humanos , Estados Unidos , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos/patología , Aprobación de Drogas , United States Food and Drug Administration , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética
14.
Clin Cancer Res ; 29(3): 508-512, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36112541

RESUMEN

On September 15, 2021, the FDA granted accelerated approval to mobocertinib (Exkivity, Takeda Pharmaceuticals USA, Inc.) for the treatment of adult patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion mutations, as detected by an FDA-approved test, whose disease has progressed on or after platinum-based chemotherapy. The approval was based on data from Study AP32788-15-101 (NCT02716116), an international, non-randomized, multi-cohort clinical trial that included patients with locally advanced or metastatic NSCLC with EGFR exon 20 insertion mutations. The overall response rate in 114 patients whose disease had progressed on or after platinum-based chemotherapy was 28% [95% confidence interval (CI), 20%-37%] with a median duration of response of 17.5 months (95% CI, 7.4-20.3). The most common adverse reactions (>20%) were diarrhea, rash, nausea, stomatitis, vomiting, decreased appetite, paronychia, fatigue, dry skin, and musculoskeletal pain. Product labeling includes a Boxed Warning for QTc prolongation and torsades de pointes. This is the first approval of an oral targeted therapy for patients with advanced EGFR exon 20 insertion mutation-positive NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adulto , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutagénesis Insercional , Inhibidores de Proteínas Quinasas/efectos adversos , Receptores ErbB/genética , Exones , Mutación
15.
J Pharmacol Exp Ther ; 342(2): 529-40, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22593093

RESUMEN

N-acetylcysteine (NAC) is the treatment of choice for acetaminophen poisoning; standard 72-h oral or 21-h intravenous protocols are most frequently used. There is controversy regarding which protocol is optimal and whether the full treatment course is always necessary. It would be challenging to address these questions in a clinical trial. We used DILIsym, a mechanistic simulation of drug-induced liver injury, to investigate optimal NAC treatment after a single acetaminophen overdose for an average patient and a sample population (n = 957). For patients presenting within 24 h of ingestion, we found that the oral NAC protocol preserves more hepatocytes than the 21-h intravenous protocol. In various modeled scenarios, we found that the 21-h NAC infusion is often too short, whereas the full 72-h oral course is often unnecessary. We found that there is generally a good correlation between the time taken to reach peak serum alanine aminotransferase (ALT) and the time taken to clear N-acetyl-p-benzoquinone imine (NAPQI) from the liver. We also found that the most frequently used treatment nomograms underestimate the risk for patients presenting within 8 h of overdose ingestion. V(max) for acetaminophen bioactivation to NAPQI was the most important variable in the model in determining interpatient differences in susceptibility. In conclusion, DILIsym predicts that the oral NAC treatment protocol, or an intravenous protocol with identical dosing, is superior to the 21-h intravenous protocol and ALT is the optimal available biomarker for discontinuation of the therapy. The modeling also suggests that modification of the current treatment nomograms should be considered.


Asunto(s)
Acetaminofén/envenenamiento , Acetilcisteína/administración & dosificación , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Acetaminofén/administración & dosificación , Administración Oral , Alanina Transaminasa/metabolismo , Benzoquinonas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Estudios de Cohortes , Simulación por Computador , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Iminas/metabolismo , Infusiones Intravenosas , Hígado/efectos de los fármacos , Hígado/metabolismo , Mal Uso de Medicamentos de Venta con Receta , Factores de Riesgo
16.
J Pharmacokinet Pharmacodyn ; 39(5): 527-41, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22875368

RESUMEN

Drug-induced liver injury (DILI) is not only a major concern for all patients requiring drug therapy, but also for the pharmaceutical industry. Many new in vitro assays and pre-clinical animal models are being developed to help screen compounds for the potential to cause DILI. This study demonstrates that mechanistic, mathematical modeling offers a method for interpreting and extrapolating results. The DILIsym™ model (version 1A), a mathematical representation of DILI, was combined with in vitro data for the model hepatotoxicant methapyrilene (MP) to carry out an in vitro to in vivo extrapolation. In addition, simulations comparing DILI responses across species illustrated how modeling can aid in selecting the most appropriate pre-clinical species for safety testing results relevant to humans. The parameter inputs used to predict DILI for MP were restricted to in vitro inputs solely related to ADME (absorption, distribution, metabolism, elimination) processes. MP toxicity was correctly predicted to occur in rats, but was not apparent in the simulations for humans and mice (consistent with literature). When the hepatotoxicity of MP and acetaminophen (APAP) was compared across rats, mice, and humans at an equivalent dose, the species most susceptible to APAP was not susceptible to MP, and vice versa. Furthermore, consideration of variability in simulated population samples (SimPops™) provided confidence in the predictions and allowed examination of the biological parameters most predictive of outcome. Differences in model sensitivity to the parameters were related to species differences, but the severity of DILI for each drug/species combination was also an important factor.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Modelos Teóricos , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Preparaciones Farmacéuticas/metabolismo , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie
17.
Methods Mol Biol ; 2486: 57-69, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35437718

RESUMEN

Physiologically based pharmacokinetic (PBPK) modeling is a mechanistic computational model that can be used to predict a drug product's ADME (absorption, distribution, metabolism, and excretion) and pharmacokinetics (PK). In recent years, PBPK modeling and simulation has been used increasingly to address many biopharmaceutics and clinical pharmacology questions, such as the effect of formulations, intrinsic factors (age, organ dysfunction, etc.), and extrinsic factors (comedications, food) on the PK of an investigational drug product. In this chapter, we will briefly introduce various PBPK models for ADME prediction and general procedures for PBPK modeling and simulations. The readers are encouraged to read updated literature on new applications of PBPK modeling and simulation which is still an emerging area in pharmaceutical development.


Asunto(s)
Modelos Biológicos , Farmacología Clínica , Biofarmacia , Simulación por Computador , Preparaciones Farmacéuticas/metabolismo , Farmacocinética
18.
Clin Pharmacol Ther ; 111(3): 624-634, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34656075

RESUMEN

Remdesivir (RDV) is the first drug approved by the US Food and Drug Administration (FDA) for the treatment of coronavirus disease 2019 (COVID-19) in certain patients requiring hospitalization. As a nucleoside analogue prodrug, RDV undergoes intracellular multistep activation to form its pharmacologically active species, GS-443902, which is not detectable in the plasma. A question arises that whether the observed plasma exposure of RDV and its metabolites would correlate with or be informative about the exposure of GS-443902 in tissues. A whole body physiologically-based pharmacokinetic (PBPK) modeling and simulation approach was utilized to elucidate the disposition mechanism of RDV and its metabolites in the lungs and liver and explore the relationship between plasma and tissue pharmacokinetics (PK) of RDV and its metabolites in healthy subjects. In addition, the potential alteration of plasma and tissue PK of RDV and its metabolites in patients with organ dysfunction was explored. Our simulation results indicated that intracellular exposure of GS-443902 was decreased in the liver and increased in the lungs in subjects with hepatic impairment relative to the subjects with normal liver function. In subjects with severe renal impairment, the exposure of GS-443902 in the liver was slightly increased, whereas the lung exposure of GS-443902 was not impacted. These predictions along with the organ impairment study results may be used to support decision making regarding the RDV dosage adjustment in these patient subgroups. The modeling exercise illustrated the potential of whole body PBPK modeling to aid in decision making for nucleotide analogue prodrugs, particularly when the active metabolite exposure in the target tissues is not available.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Hígado/efectos de los fármacos , Pulmón/efectos de los fármacos , Modelos Biológicos , Insuficiencia Multiorgánica/metabolismo , Adenosina Monofosfato/sangre , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacocinética , Adenosina Monofosfato/orina , Adulto , Alanina/sangre , Alanina/metabolismo , Alanina/farmacocinética , Alanina/orina , Humanos , Hígado/metabolismo , Pulmón/metabolismo , Masculino , Insuficiencia Multiorgánica/tratamiento farmacológico , Distribución Tisular
19.
Clin Pharmacol Ther ; 111(3): 572-578, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34807992

RESUMEN

Leveraging limited clinical and nonclinical data through modeling approaches facilitates new drug development and regulatory decision making amid the coronavirus disease 2019 (COVID-19) pandemic. Model-informed drug development (MIDD) is an essential tool to integrate those data and generate evidence to (i) provide support for effectiveness in repurposed or new compounds to combat COVID-19 and dose selection when clinical data are lacking; (ii) assess efficacy under practical situations such as dose reduction to overcome supply issues or emergence of resistant variant strains; (iii) demonstrate applicability of MIDD for full extrapolation to adolescents and sometimes to young pediatric patients; and (iv) evaluate the appropriateness for prolonging a dosing interval to reduce the frequency of hospital visits during the pandemic. Ongoing research activities of MIDD reflect our continuous effort and commitment in bridging knowledge gaps that leads to the availability of effective treatments through innovation. Case examples are presented to illustrate how MIDD has been used in various stages of drug development and has the potential to inform regulatory decision making.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19 , Desarrollo de Medicamentos/métodos , Modelos Biológicos , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/farmacología , COVID-19/epidemiología , Aprobación de Drogas , Reposicionamiento de Medicamentos , Humanos , Farmacología Clínica/métodos , SARS-CoV-2/inmunología
20.
Clin Transl Sci ; 15(11): 2567-2575, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36066467

RESUMEN

Human radiolabeled mass balance studies are an important component of the clinical pharmacology programs supporting the development of new investigational drugs. These studies allow for understanding of the absorption, distribution, metabolism, and excretion of the parent drug and metabolite(s) in the human body. Understanding the drug's disposition as well as metabolite profiling and abundance via mass balance studies can help inform the overall drug development program. A survey of the US Food and Drug Administration (FDA)-approved new drug applications (NDAs) indicated that about 66% of the drugs had relied on findings from the mass balance studies to help understand the pharmacokinetic characteristics of the drug and to inform the overall drug development program. When such studies were not available in the original NDA, adequate justifications were routinely provided. Of the 104 mass balance studies included in this survey, most of the studies were conducted in healthy volunteers (90%) who were mostly men (>86%). The studies had at least six evaluable participants (66%) and were performed using the final route(s) of administration (98%). Eighty-five percent of the studies utilized a dose within the pharmacokinetic linearity range with 54% of the studies using a dose the same as the approved dose. Nearly all studies were performed as a single-dose (97%) study using a fit-for-purpose radiolabeled formulation. In this analysis, we summarized the current practices for conducting mass balance studies and highlighted the importance of conducting appropriately designed human radiolabeled mass balance studies and the challenges associated with inadequately designed or untimely studies.


Asunto(s)
Drogas en Investigación , Farmacología Clínica , Masculino , Estados Unidos , Humanos , Femenino , United States Food and Drug Administration , Preparaciones Farmacéuticas/metabolismo , Recolección de Datos , Aprobación de Drogas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA