Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 36(6): 1032-1037, 2019 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-31875379

RESUMEN

For the researches relating to the biomedical fields such as preparation of drug micro-particulates and biomedical materials coating, according to the modular design concept and combing the piezoelectric micro-jetting technology with electromechanical engineering and automatic control technology, the drug micro-jetting multifunctional system was designed, which included the spraying support subsystem, X - Y motion platform, Z -axis subsystem and rapid installation subsystem. The drug micro-jetting multifunctional system was run and adjusted. The versatility, rationality and feasibility of this system were validated by the experiments of amoxicillin microcapsule preparation, titanium alloy drug-loaded coating preparation and balloon electrode coating preparation. It was shown that the system can be used as basic platform in multi-disciplinary cross technology research such as biomedical engineering, pharmaceutical engineering and so on.


Asunto(s)
Aleaciones , Sistemas de Liberación de Medicamentos , Electrodos , Titanio
2.
ACS Appl Mater Interfaces ; 16(5): 6548-6561, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38270085

RESUMEN

Much progress has been made toward the development of wearable flexible strain sensors with high sensing performance to monitor human motion, but continuous function in harsh aqueous environments remains a significant challenge. A promising strategy has been the design of sensors with highly durable superhydrophobicity and maintenance of unique sensing properties. Herein, an extremely durable superhydrophobic strain sensor with an ultrawide sensing range was simply fabricated by directly brushing conductive carbon black nanoparticles (CBNPs) onto an elastic silicone rubber sheet (SS) with poly(dimethylsiloxane) (PDMS) coatings (i.e., SS/PDMS-CBNPs sensors). First, this method avoided the use of toxic solvents and a conventional prestretching treatment. Second, considering the easily destroyed rough structures and surface chemistry for conventional superhydrophobic sensors during practical applications, the prepared SS/PDMS-CBNP sensors showed excellent mechanical durability of both superhydrophobicity and sensing as examined by harsh abrasion (300 cycles), stretching (up to 200%), and ultrasonication (40 min) treatments. Third, the prepared superhydrophobic strain sensor exhibited high sensitivity (gauge factor of 101.75), high stretchability (0.015-460%), low hysteresis (83 ms), and long-term stability (10000 cycles). Fourth, the high biocompatibility of the SS/PDMS-CBNP sensor was demonstrated by rabbit skin irritation tests. Finally, the remarkable water-repellent and sensing properties of the SS/PDMS-CBNP sensor allowed its application to monitor a swimmer's real-time situation and send distress signals when needed.


Asunto(s)
Dispositivos Electrónicos Vestibles , Animales , Humanos , Conejos , Movimiento (Física) , Agua , Conductividad Eléctrica , Interacciones Hidrofóbicas e Hidrofílicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA