Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nat Immunol ; 25(5): 834-846, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561495

RESUMEN

Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.


Asunto(s)
Antígenos CD , Apirasa , Cadenas alfa de Integrinas , Receptores de Antígenos de Linfocitos T , Transducción de Señal , Animales , Humanos , Ratones , Antígenos CD/metabolismo , Antígenos CD/inmunología , Línea Celular Tumoral , Citotoxicidad Inmunológica , Cadenas alfa de Integrinas/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/inmunología , Linfocitos T Citotóxicos/inmunología
2.
Nat Immunol ; 23(1): 50-61, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853448

RESUMEN

NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.


Asunto(s)
Antígeno HLA-B7/inmunología , Epítopos Inmunodominantes/inmunología , Proteínas de la Nucleocápside/inmunología , SARS-CoV-2/inmunología , Linfocitos T Citotóxicos/inmunología , Anciano , Secuencia de Aminoácidos , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos/inmunología , COVID-19/inmunología , COVID-19/patología , Línea Celular Transformada , Femenino , Perfilación de la Expresión Génica , Humanos , Memoria Inmunológica/inmunología , Masculino , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T/inmunología , Índice de Severidad de la Enfermedad , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Virus Vaccinia/metabolismo
3.
Nat Immunol ; 21(11): 1336-1345, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32887977

RESUMEN

The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.


Asunto(s)
Antígenos Virales/inmunología , Betacoronavirus/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Epítopos de Linfocito T/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/patología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología , Reino Unido , Vacunas Virales/inmunología
4.
Proc Natl Acad Sci U S A ; 121(5): e2320237121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252821

RESUMEN

Dynamic 3D covalent organic frameworks (COFs) have shown concerted structural transformation and adaptive gas adsorption due to the conformational diversity of organic linkers. However, the isolation and observation of COF rotamers constitute undergoing challenges due to their comparable free energy and subtle rotational energy barrier. Here, we report the atomic-level observation and structural evolution of COF rotamers by cryo-3D electron diffraction and synchrotron powder X-ray diffraction. Specifically, we optimize the crystallinity and morphology of COF-320 to manifest its coherent dynamic responses upon adaptive inclusion of guest molecules. We observe a significant crystal expansion of 29 vol% upon hydration and a giant swelling with volume change up to 78 vol% upon solvation. We record the structural evolution from a non-porous contracted phase to two narrow-pore intermediate phases and the fully opened expanded phase using n-butane as a stabilizing probe at ambient conditions. We uncover the rotational freedom of biphenylene giving rise to significant conformational changes on the diimine motifs from synclinal to syn-periplanar and anticlinal rotamers. We illustrate the 10-fold increment of pore volumes and 100% enhancement of methane uptake capacity of COF-320 at 100 bar and 298 K. The present findings shed light on the design of smarter organic porous materials to maximize host-guest interaction and boost gas uptake capacity through progressive structural transformation.

5.
Anal Biochem ; 687: 115453, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38158108

RESUMEN

Analysis of mecA gene in Staphylococcus aureus (S. aureus) is essential for controlling infections in intensive care units (ICU) and preventing the use of ineffectual empirical treatments. However, quantitative determination of the mecA gene remains difficult. Herein, we propose a simple and sensitive colorimetric approach by integrating exonuclease-III (Exo-III) assisted signal cascade and G-quadruplex/hemin DNAzymes (G4 DNAzymes) catalyzed 2,2'-azino-bis (3-ethylben-zothiazoline-6-sulfonic acid) (ABTS) based color reaction. In this method, signal amplification does not necessitate the use of complex experimental components, such as multiple enzymes and primer design, while still maintaining a high signal amplifying efficiency. Therefore, the method has a broad mecA gene detection range from 10 fM to 1 nM and a low limit of detection down to 3.4 fM level. Taking the merit of simplicity and high sensitivity, the approach is promising in analyzing mecA gene in S. aureus and diagnosing infections.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , ADN Catalítico/metabolismo , Colorimetría/métodos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Catálisis , Técnicas Biosensibles/métodos , Límite de Detección , Hemina
6.
Pharmacol Res ; 202: 107099, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342327

RESUMEN

Cancer cells frequently develop resistance to chemotherapeutic therapies and targeted drugs, which has been a significant challenge in cancer management. With the growing advances in technologies in isolation and identification of natural products, the potential of natural products in combating cancer multidrug resistance has received substantial attention. Importantly, natural products can impact multiple targets, which can be valuable in overcoming drug resistance from different perspectives. In the current review, we will describe the well-established mechanisms underlying multidrug resistance, and introduce natural products that could target these multidrug resistant mechanisms. Specifically, we will discuss natural compounds such as curcumin, resveratrol, baicalein, chrysin and more, and their potential roles in combating multidrug resistance. This review article aims to provide a systematic summary of recent advances of natural products in combating cancer drug resistance, and will provide rationales for novel drug discovery.


Asunto(s)
Antineoplásicos , Productos Biológicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos
7.
Mol Ther ; 31(12): 3520-3530, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37915172

RESUMEN

Otoferlin (OTOF) gene mutations represent the primary cause of hearing impairment and deafness in auditory neuropathy. The c.2485C>T (p. Q829X) mutation variant is responsible for approximately 3% of recessive prelingual deafness cases within the Spanish population. Previous studies have used two recombinant AAV vectors to overexpress OTOF, albeit with limited efficacy. In this study, we introduce an enhanced mini-dCas13X RNA base editor (emxABE) delivered via an AAV9 variant, achieving nearly 100% transfection efficiency in inner hair cells. This approach is aimed at treating OTOFQ829X, resulting in an approximately 80% adenosine-to-inosine conversion efficiency in humanized OtofQ829X/Q829X mice. Following a single scala media injection of emxABE targeting OTOFQ829X (emxABE-T) administered during the postnatal day 0-3 period in OtofQ829X/Q829X mice, we observed OTOF expression restoration in nearly 100% of inner hair cells. Moreover, auditory function was significantly improved, reaching similar levels as in wild-type mice. This enhancement persisted for at least 7 months. We also investigated P5-P7 and P30 OtofQ829X/Q829X mice, achieving auditory function restoration through round window injection of emxABE-T. These findings not only highlight an effective therapeutic strategy for potentially addressing OTOFQ829X-induced hearing loss but also underscore emxABE as a versatile toolkit for treating other monogenic diseases characterized by premature termination codons.


Asunto(s)
Sordera , Pérdida Auditiva Central , Pérdida Auditiva , Animales , Ratones , Edición Génica , Pérdida Auditiva/genética , Pérdida Auditiva/terapia , Mutación
8.
BMC Biol ; 21(1): 202, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775748

RESUMEN

BACKGROUND: Brassica napus is an important oilseed crop providing high-quality vegetable oils for human consumption and non-food applications. However, the regulation between embryo and seed coat for the synthesis of oil and phenylpropanoid compounds remains largely unclear. RESULTS: Here, we analyzed the transcriptomes in developing seeds at 2-day intervals from 14 days after flowering (DAF) to 64 DAF. The 26 high-resolution time-course transcriptomes are clearly clustered into five distinct groups from stage I to stage V. A total of 2217 genes including 136 transcription factors, are specifically expressed in the seed and show high temporal specificity by being expressed only at certain stages of seed development. Furthermore, we analyzed the co-expression networks during seed development, which mainly included master regulatory transcription factors, lipid, and phenylpropane metabolism genes. The results show that the phenylpropane pathway is prominent during seed development, and the key enzymes in the phenylpropane metabolic pathway, including TT5, BAN, and the transporter TT19, were directly or indirectly related to many key enzymes and transcription factors involved in oil accumulation. We identified candidate genes that may regulate seed oil content based on the co-expression network analysis combined with correlation analysis of the gene expression with seed oil content and seed coat content. CONCLUSIONS: Overall, these results reveal the transcriptional regulation between lipid and phenylpropane accumulation during B. napus seed development. The established co-expression networks and predicted key factors provide important resources for future studies to reveal the genetic control of oil accumulation in B. napus seeds.


Asunto(s)
Brassica napus , Transcriptoma , Humanos , Brassica napus/genética , Perfilación de la Expresión Génica , Aceites de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Semillas/genética , Regulación de la Expresión Génica de las Plantas
9.
Nano Lett ; 23(9): 4066-4073, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37097764

RESUMEN

Reticular chemistry provides opportunities to design solid-state electrolytes (SSEs) with modular tunability. However, SSEs based on modularly designed crystalline metal-organic frameworks (MOFs) often require liquid electrolytes for interfacial contact. Monolithic glassy MOFs can have liquid processability and uniform lithium conduction, which is promising for the reticular design of SSE without liquid electrolytes. Here, we develop a generalizable strategy for the modular design of noncrystalline SSEs based on a bottom-up synthesis of glassy MOFs. We demonstrate such a strategy by linking polyethylene glycol (PEG) struts and nanosized titanium-oxo clusters into network structures termed titanium alkoxide networks (TANs). The modular design allows the incorporation of PEG linkers with different molecular weights, which give optimal chain flexibility for high ionic conductivity, and the reticular coordinative network provides a controlled degree of cross-linking that gives adequate mechanical strength. This research shows the power of reticular design in noncrystalline molecular framework materials for SSEs.

10.
J Integr Plant Biol ; 66(3): 484-509, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38456625

RESUMEN

Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.


Asunto(s)
Brassica napus , Brassica napus/genética , Sitios de Carácter Cuantitativo/genética , Fitomejoramiento , Genómica , Fenotipo
11.
J Am Chem Soc ; 145(42): 22885-22889, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37844128

RESUMEN

Although reticular chemistry has commonly utilized mutually embracing tetrahedral metal complexes as crossing points to generate three-dimensional molecularly woven structures, weaving in two dimensions remains largely unexplored. We report a new strategy to access 2D woven COFs by controlling the angle of the usually linear linker, resulting in the successful synthesis of a 2D woven pattern based on chain-link fence. The synthesis was accomplished by linking aldehyde-functionalized copper(I) bisphenanthroline complexes with bent 4,4'-oxydianiline building units. This results in the formation of a crystalline solid, termed COF-523-Cu, whose structure was characterized by spectroscopic techniques and electron and X-ray diffraction techniques to reveal a molecularly woven, twofold-interpenetrated chain-link fence. The present work significantly advances the concept of molecular weaving and its practice in the design of complex chemical structures.

12.
Clin Gastroenterol Hepatol ; 21(9): 2347-2358.e6, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36464141

RESUMEN

BACKGROUND & AIMS: We evaluated the efficacy of once-daily (QD) upadacitinib 45 mg, an oral, reversible Janus kinase inhibitor, on early symptomatic improvement for ulcerative colitis (UC). Post hoc analyses were performed on pooled data from 2 replicate, phase 3, multicenter induction trials, U-ACHIEVE Induction and U-ACCOMPLISH, to determine the earliest time point of efficacy onset. METHODS: Diary entry data through 14 days from the first dose of placebo or upadacitinib 45 mg QD were analyzed for daily improvement in UC symptoms (stool frequency, rectal bleeding, abdominal pain, and bowel urgency). Changes in inflammatory markers, high-sensitivity C-reactive protein (hs-CRP), and fecal calprotectin (FCP) were assessed at week 2 and quality of life (QoL) at weeks 2 and 8. Regression analysis determined the association between changes in UC symptoms and the likelihood of achieving clinical remission/response per Adapted Mayo score at week 8. RESULTS: Overall, 988 patients (n = 328 placebo, n = 660 upadacitinib) were analyzed. Patients treated with upadacitinib demonstrated significant improvements vs placebo in all UC symptoms between days 1 and 3 and maintained through day 14. A >50% reduction from baseline in hs-CRP and FCP levels was achieved by 75.7% and 48.2% of patients, respectively (P < .001 vs placebo). Increased rates of clinical remission/response per Partial Mayo score from week 2 (26.9%/59.4% upadacitinib 45 mg QD vs 4.3%/22.3% placebo, P < .001) and significant improvements in QoL at weeks 2 and 8 were observed. Early improvement in stool frequency and bowel urgency by day 3 and reductions in hs-CRP and FCP by week 2 were significantly associated with clinical remission/response at week 8. CONCLUSIONS: Upadacitinib 45 mg QD provided rapid relief of UC symptoms from day 1. CLINICALTRIALS: gov: U-ACHIEVE Induction (NCT02819635) and U-ACCOMPLISH (NCT03653026).


Asunto(s)
Colitis Ulcerosa , Humanos , Colitis Ulcerosa/tratamiento farmacológico , Calidad de Vida , Proteína C-Reactiva , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Compuestos Heterocíclicos con 3 Anillos/farmacología , Resultado del Tratamiento , Método Doble Ciego
13.
Mol Carcinog ; 62(11): 1731-1744, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37589446

RESUMEN

The cell cycle, a pivotal regulator of cell proliferation, can be significantly influenced by the phosphatase and tensin homolog (PTEN)/AKT signaling pathway's modulation of cyclin-related proteins. In our study, we discovered the crucial role of EEF1E1 in this process, as it appears to downregulate PTEN expression. Furthermore, our findings affirmed that EEF1E1 modulates downstream cell cycle-related proteins by suppressing the PTEN/AKT pathway. Cell cycle assay results revealed that EEF1E1 downregulation stunted the advancement of glioma cells in both the G1 and S phases. A suite of assays-Cell Counting Kit-8, colony formation, and ethyl-2'-deoxyuridine-substantiated that the EEF1E1 downregulation markedly curtailed glioma proliferation. We further validated this phenomenon through animal studies and coculture experiments on brain slices. Our comprehensive investigation indicates that EEF1E1 knockdown can effectively inhibit the glioma cell proliferation by regulating the cell cycle via the PTEN/AKT signaling pathway. Consequently, EEF1E1 emerges as a potential therapeutic target for glioma treatment, signifying critical clinical implications.

14.
Metab Brain Dis ; 38(5): 1543-1553, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36870018

RESUMEN

Cerebral ischemia (CI), as the cerebrovascular disease with the highest incidence rate, is treated by limited intravenous thrombolysis and intravascular therapy to recanalize the embolized vessels. Recently, the discovery of histone lactylation proposes a potential molecular mechanism for the role of lactate in physiological and pathological processes. This study aimed to analyze the lactate dehydrogenase A (LDHA) mediated histone lactylation in CI reperfusion (CI/R) injury. Oxygen-glucose deprivation/reoxygenation (OGD/R) treated N2a cells and middle cerebral artery occlusion (MCAO) treated rats was used as the CI/R model in vivo and in vitro. Cell viability and pyroptosis was assessed using CCK-8 and flow cytometry. RT-qPCR was performed to detect the relative expression. The relationship between histone lactylation and HMGB1 was verified by CHIP assay. LDHA, HMGB1, lactate and histone lactylation was up-regulated in the OGD/R treated N2a cells. Additionally, LDHA knockdown decreased HMGB1 levels in vitro, and relieved CI/R injury in vivo. Besides, LDHA silencing declined the histone lactylation mark enrichment on HMGB1 promoter, and lactate supplement rescued it. What?s more, LDHA knockdown decreased the IL-18 and IL-1ß contents, and the cleaved-caspase-1 and GSDMD-N protein levels in the OGD/R treated N2a cells, which was reversed by HMGB1 overexpression. Knockdown of LDHA suppressed the pyroptosis in the N2a cells induced by OGD/R, which was reversed by HMGB1 overexpression. Mechanistically, LDHA mediated the histone lactylation induced pyroptosis through targeting HMGB1 in the CI/R injury.


Asunto(s)
Isquemia Encefálica , Proteína HMGB1 , Daño por Reperfusión , Ratas , Animales , Piroptosis , Histonas , Lactato Deshidrogenasa 5/metabolismo , Proteína HMGB1/metabolismo , Oxígeno/metabolismo , Lactatos , Daño por Reperfusión/metabolismo
15.
J Sci Food Agric ; 103(12): 5839-5848, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37127920

RESUMEN

BACKGROUND: Ageing and associated cognitive impairments are becoming serious issues around the world. In this study, the physiological properties of three kinds of complexes of fatty acid (capric, stearic and oleic acid, respectively) and de-branched starch molecules were investigated via a d-galactose-induced ageing model. This study revealed differences in the regulation of cognitive impairment and brain damage following intervention of different complexes, which might highlight a potent approach for the prevention of this chronic disease. RESULTS: Data indicated that three complexes improved response time and cognitive function and the bio-parameter markers associated with oxidative stress in ageing rats. Among them, the complexes prepared from de-branched starch-oleic acid showed a greater improvement compared to others. In addition, de-branched starch-capric acid complex showed a higher improvement in the morphology of colon cells and hippocampal neuronal cells. The consumption of de-branched starch-capric acid and -oleic acid complexes generated more short-chain fatty acids in the gut. More importantly, the complexation of de-branched starch with either caprate or stearate enhanced gut Akkermansia. Therefore, it was proposed that the richness in Akkermansia and gut metabolites might be associated with reduced damage of the hippocampal neuronal cells induced by the ageing progress. Moreover, the AMPK (AMP-activated protein kinase) pathway was activated in liver in de-branched starch-capric acid complex diet. In summary, de-branched starch-capric acid complex exhibited a greater effect on the attenuation of ageing-induced cognitive impairment. CONCLUSION: This study might highlight a new approach for intervening in the cognitive impairment during the ageing progress via a food supply. © 2023 Society of Chemical Industry.


Asunto(s)
Disfunción Cognitiva , Almidón , Ratas , Animales , Almidón/química , Ácidos Grasos , Ácido Oléico/química , Ácidos Decanoicos , Envejecimiento , Disfunción Cognitiva/prevención & control
16.
J Integr Plant Biol ; 65(11): 2421-2436, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37642157

RESUMEN

Phosphorus is a major nutrient vital for plant growth and development, with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids. Here, we report that NON-SPECIFIC PHOSPHOLIPASE C4 (NPC4) in rapeseed (Brassica napus) releases phosphate from phospholipids to promote growth and seed yield, as plants with altered NPC4 levels showed significant changes in seed production under different phosphate conditions. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated knockout of BnaNPC4 led to elevated accumulation of phospholipids and decreased growth, whereas overexpression (OE) of BnaNPC4 resulted in lower phospholipid contents and increased plant growth and seed production. We demonstrate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in vitro, and plants with altered BnaNPC4 function displayed changes in their sphingolipid and glycerolipid contents in roots, with a greater change in glycerolipids than sphingolipids in leaves, particularly under phosphate deficiency conditions. In addition, BnaNPC4-OE plants led to the upregulation of genes involved in lipid metabolism, phosphate release, and phosphate transport and an increase in free inorganic phosphate in leaves. These results indicate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in rapeseed to enhance phosphate release from membrane phospholipids and promote growth and seed production.


Asunto(s)
Brassica napus , Fosfolípidos , Esfingolípidos , Fosfolipasas de Tipo C , Brassica napus/crecimiento & desarrollo , Fosfolipasas de Tipo C/metabolismo , Esfingolípidos/metabolismo , Fosfolípidos/metabolismo , Sistemas CRISPR-Cas , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Técnicas de Inactivación de Genes
17.
Mol Carcinog ; 61(6): 558-571, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35384084

RESUMEN

Glioma is the most common primary malignant intracranial tumor in humans, and glioblastoma (GBM) has been associated with a more aggressive histology and poorer prognosis. There is growing evidence that circular RNAs (circRNAs) are involved in the progression of various malignancies; however, the role and molecular mechanism of circRNAs in glioma remain elusive. In the present study, we screened for differentially expressed circRNAs in gliomas by using a bioinformatics method. Significant upregulation in glioma tissues was verified by quantitative real-time polymerase chain reaction (qRT-PCR), and the prognostic value was evaluated. The potential oncogenic role of circular RNA TCF25 (circTCF25) in glioma was assessed both in vivo and in vitro. Bioinformatics analysis and luciferase reporter assays confirmed the interaction among circTCF25, microRNA-206 (miR-206), and its target gene Cyclophilin B (CypB). circTCF25 was predominantly located in the cytoplasm; the combination of mir-206 and circTCF25 reverses the effects of knockdown of circTCF25 on the proliferation, migration, invasion, and tumorigenesis of glioma cells. Competitive binding between circTCF25 and miR-206 mainly upregulates target gene CypB expression by preventing its inhibition of the Jak2/p-stat3 pathway. In addition, knockdown of circTCF25 reduced CypB expression by inhibiting JAK2/p-stat3, which was rescued by treatment with a miR-206 inhibitor. In summary, our findings demonstrate that the circTCF25/miR-206/CypB axis plays a vital role in glioma progression, migration, invasion, and tumorigenesis.


Asunto(s)
Glioma , MicroARNs , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Ciclofilinas , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
18.
Plant Biotechnol J ; 20(1): 211-225, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34525252

RESUMEN

A high content of seed glucosinolates and their degradation products imposes anti-nutritional effects on livestock; therefore, persistent efforts are made to reduce the seed GSL content to increase the commercial value of rapeseed meal. Here, we dissected the genetic structure of SGC by genome-wide association studies (GWAS) combined with transcriptome-wide association studies (TWAS). Fifteen reliable quantitative trait loci (QTLs) were identified to be associated with the reduced SGC in modern B. napus cultivars by GWAS. Analysis of the selection strength and haplotypes at these QTLs revealed that low SGC was predominantly generated by the co-selection of qGSL.A02.2, qGSL.C02.1, qGSL.A09.2, and qGSL.C09.1. Integration of the results from TWAS, comprehensive bioinformatics, and POCKET algorithm analyses indicated that BnaC02.GTR2 (BnaC02g42260D) is a candidate gene underlying qGSL.C02.1. Using CRISPR/Cas9-derived Bna.gtr2s knockout mutants, we experimentally verified that both BnaC02.GTR2 and its three paralogs positively regulate seed GSL accumulation but negatively regulated vegetative tissue GSL contents. In addition, we observed smaller seeds with higher seed oil content in these Bna.gtr2 mutants. Furthermore, both RNA-seq and correlation analyses suggested that Bna.GTR2s might play a comprehensive role in seed development, such as amino acid accumulation, GSL synthesis, sugar assimilation, and oil accumulation. This study unravels the breeding selection history of low-SGC improvement and provides new insights into the molecular function of Bna.GTR2s in both seed GSL accumulation and seed development in B. napus.


Asunto(s)
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Glucosinolatos/metabolismo , Fitomejoramiento/métodos , Semillas , Transcriptoma/genética
19.
Plant Physiol ; 187(4): 2820-2836, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34890462

RESUMEN

The mechanical properties of guard cell (GC) walls are important for stomatal development and stomatal response to external stimuli. However, the molecular mechanisms of pectin synthesis and pectin composition controlling stomatal development and dynamics remain poorly explored. Here, we characterized the role of two Arabidopsis (Arabidopsis thaliana) galacturonosyltransferases, GAUT10 and GAUT11, in plant growth, stomatal development, and stomatal dynamics. GAUT10 and GAUT11 double mutations reduced pectin synthesis and promoted homogalacturonan (HG) demethylesterification and demethylesterified HG degradation, resulting in larger stomatal complexes and smaller pore areas, increased stomatal dynamics, and enhanced drought tolerance of plants. In contrast, increased GAUT10 or GAUT11 expression impaired stomatal dynamics and drought sensitivity. Genetic interaction analyses together with immunolabeling analyses suggest that the methylesterified HG level is important in stomatal dynamics, and pectin abundance with the demethylesterified HG level controls stomatal dimension and stomatal size. Our results provide insight into the molecular mechanism of GC wall properties in stomatal dynamics, and highlight the role of GAUT10 and GAUT11 in stomatal dimension and dynamics through modulation of pectin biosynthesis and distribution in GC walls.


Asunto(s)
Arabidopsis/fisiología , Estomas de Plantas/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis , Glucuronosiltransferasa , Hexosiltransferasas , Estomas de Plantas/crecimiento & desarrollo
20.
Clin Proteomics ; 19(1): 6, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164671

RESUMEN

BACKGROUND: Remote Ischemic Conditioning (RIC) has been proposed as a therapeutic intervention to circumvent the ischemia/reperfusion injury (IRI) that is inherent to organ transplantation. Using a porcine kidney transplant model, we aimed to decipher the subclinical molecular effects of a RIC regime, compared to non-RIC controls. METHODS: Kidney pairs (n = 8 + 8) were extracted from brain dead donor pigs and transplanted in juvenile recipient pigs following a period of cold ischemia. One of the two kidney recipients in each pair was subjected to RIC prior to kidney graft reperfusion, while the other served as non-RIC control. We designed an integrative Omics strategy combining transcriptomics, proteomics, and phosphoproteomics to deduce molecular signatures in kidney tissue that could be attributed to RIC. RESULTS: In kidney grafts taken out 10 h after transplantation we detected minimal molecular perturbations following RIC compared to non-RIC at the transcriptome level, which was mirrored at the proteome level. In particular, we noted that RIC resulted in suppression of tissue inflammatory profiles. Furthermore, an accumulation of muscle extracellular matrix assembly proteins in kidney tissues was detected at the protein level, which may be in response to muscle tissue damage and/or fibrosis. However, the majority of these protein changes did not reach significance (p < 0.05). CONCLUSIONS: Our data identifies subtle molecular phenotypes in porcine kidneys following RIC, and this knowledge could potentially aid optimization of remote ischemic conditioning protocols in renal transplantation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA