Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Integr Plant Biol ; 65(3): 674-691, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36250511

RESUMEN

Drought and low temperature are two key environmental factors that induce adult citrus flowering. However, the underlying regulation mechanism is poorly understood. The bZIP transcription factor FD is a key component of the florigen activation complex (FAC) which is composed of FLOWERING LOCUS T (FT), FD, and 14-3-3 proteins. In this study, isolation and characterization of CiFD in citrus found that there was alternative splicing (AS) of CiFD, forming two different proteins (CiFDα and CiFDß). Further investigation found that their expression patterns were similar in different tissues of citrus, but the subcellular localization and transcriptional activity were different. Overexpression of the CiFD DNA sequence (CiFD-DNA), CiFDα, or CiFDß in tobacco and citrus showed early flowering, and CiFD-DNA transgenic plants were the earliest, followed by CiFDß and CiFDα. Interestingly, CiFDα and CiFDß were induced by low temperature and drought, respectively. Further analysis showed that CiFDα can form a FAC complex with CiFT, Ci14-3-3, and then bind to the citrus APETALA1 (CiAP1) promoter and promote its expression. However, CiFDß can directly bind to the CiAP1 promoter independently of CiFT and Ci14-3-3. These results showed that CiFDß can form a more direct and simplified pathway that is independent of the FAC complex to regulate drought-induced flowering through AS. In addition, a bHLH transcription factor (CibHLH96) binds to CiFD promoter and promotes the expression of CiFD under drought condition. Transgenic analysis found that CibHLH96 can promote flowering in transgenic tobacco. These results suggest that CiFD is involved in drought- and low-temperature-induced citrus flowering through different regulatory patterns.


Asunto(s)
Citrus , Citrus/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Plantas/metabolismo , Empalme Alternativo , Flores/fisiología , Sequías , Temperatura , Florigena/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo
2.
J Exp Bot ; 72(20): 7002-7019, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34185082

RESUMEN

Shoot-tip abortion is a very common phenomenon in some perennial woody plants and it affects the height, architecture, and branch orientation of trees; however, little is currently known about the underlying mechanisms. In this study, we identified a gene in sweet orange (Citrus sinensis) encoding a KNAT-like protein (CsKN1) and found high expression in the shoot apical meristem (SAM). Overexpression of CsKN1 in transgenic plants prolonged the vegetative growth of SAMs, whilst silencing resulted in either the loss or inhibition of SAMs. Yeast two-hybrid analysis revealed that CsKN1 interacted with another citrus KNAT-like protein (CsKN2), and overexpression of CsKN2 in lemon and tobacco caused an extreme multiple-meristem phenotype. Overexpression of CsKN1 and CsKN2 in transgenic plants resulted in the differential expression of numerous genes related to hormone biosynthesis and signaling. Yeast one-hybrid analysis revealed that the CsKN1-CsKN2 complex can bind to the promoter of citrus floral meristem gene LEAFY (CsLFY) and inhibit its expression. These results indicated that CsKN1 might prolong the vegetative growth period of SAMs by delaying flowering. In addition, an ethylene-responsive factor (CsERF) was found to bind to the CsKN1 promoter and suppresses its transcription. Overexpression of CsERF in Arabidopsis increased the contents of ethylene and reactive oxygen species, which might induce the occurrence of shoot-tip abscission. On the basis of our results, we conclude that CsKN1 and CsKN2 might work cooperatively to regulate the shoot-tip abscission process in spring shoots of sweet orange.


Asunto(s)
Citrus sinensis , Citrus , Citrus/genética , Citrus/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069068

RESUMEN

MADS-box genes are involved in various developmental processes including vegetative development, flower architecture, flowering, pollen formation, seed and fruit development. However, the function of most MADS-box genes and their regulation mechanism are still unclear in woody plants compared with model plants. In this study, a MADS-box gene (CiMADS43) was identified in citrus. Phylogenetic and sequence analysis showed that CiMADS43 is a GOA-like Bsister MADS-box gene. It was localized in the nucleus and as a transcriptional activator. Overexpression of CiMADS43 promoted early flowering and leaves curling in transgenic Arabidopsis. Besides, overexpression or knockout of CiMADS43 also showed leaf curl phenotype in citrus similar to that of CiMADS43 overexpressed in Arabidopsis. Protein-protein interaction found that a SEPALLATA (SEP)-like protein (CiAGL9) interacted with CiMADS43 protein. Interestingly, CiAGL9 also can bind to the CiMADS43 promoter and promote its transcription. Expression analysis also showed that these two genes were closely related to seasonal flowering and the development of the leaf in citrus. Our findings revealed the multifunctional roles of CiMADS43 in the vegetative and reproductive development of citrus. These results will facilitate our understanding of the evolution and molecular mechanisms of MADS-box genes in citrus.


Asunto(s)
Citrus/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Secuencia de Aminoácidos , Citrus/genética , Citrus/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Dominio MADS/genética , Fenotipo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Homología de Secuencia
4.
Plant Mol Biol ; 104(1-2): 151-171, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32656674

RESUMEN

KEY MESSAGE: Pollen abortion could be mainly attributed to abnormal meiosis in the mutant. Multiomics analysis uncovered significant epigenetic variations between the mutant and its wild type during the pollen abortion process. Male sterility caused by aborted pollen can result in seedless fruit. A seedless Ponkan mandarin mutant (bud sport) was used to compare the transcriptome, methylome, and metabolome with its progenitor to understand the mechanism of citrus pollen abortion. Cytological observations showed that the anther of the mutant could form microspore mother cells, although the microspores failed to develop fertile pollen at the anther dehiscence stage. Based on pollen phenotypic analysis, pollen abortion could be mainly attributed to abnormal meiosis in the mutant. A transcriptome analysis uncovered the molecular mechanisms underlying pollen abortion between the mutant and its wild type. A total of 5421 differentially expressed genes were identified, and some of these genes were involved in the meiosis, hormone biosynthesis and signaling, carbohydrate, and flavonoid pathways. A total of 50,845 differentially methylated regions corresponding to 15,426 differentially methylated genes in the genic region were found between the mutant and its wild type by the methylome analysis. The expression level of these genes was negatively correlated with their methylation level, especially in the promoter regions. In addition, 197 differential metabolites were identified between the mutant and its wild type based on the metabolome analysis. The transcription and metabolome analysis further indicated that the expression of genes in the flavonoid, carbohydrate, and hormone metabolic pathways was significantly modulated in the pollen of the mutant. These results indicated that demethylation may alleviate the silencing of carbohydrate genes in the mutant, resulting in excessive starch and sugar hydrolysis and thereby causing pollen abortion in the mutant.


Asunto(s)
Citrus/metabolismo , Epigenoma , Metaboloma , Proteínas de Plantas/metabolismo , Polen/metabolismo , Transcriptoma , Citrus/citología , Citrus/genética , Citrus/crecimiento & desarrollo , Metilación de ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genotipo , Meiosis , Reguladores del Crecimiento de las Plantas/metabolismo , Infertilidad Vegetal/genética , Infertilidad Vegetal/fisiología , Proteínas de Plantas/genética , Polen/genética , Análisis de Secuencia
5.
Plant Sci ; 319: 111263, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35487669

RESUMEN

PISTILLATA (PI), as a member of MADS-box transcription factor, plays an important role in petal and stamen specification in Arabidopsis. However, little is known about PI-like genes in citrus. To understand the molecular mechanism of PI during the developmental process of citrus flower, a PI-like gene CcMADS20 was isolated from Citrus Clemantina. Sequence alignment and phylogenetic analysis revealed that CcMADS20 had relatively high similarity with PI-like homolog and was classified in the core dicotyledonous group. The temporal and spatial expression analyses showed that CcMADS20 was specifically expressed in petal and stamen of citrus flower, which was consistent with PI expression pattern in Arabidopsis. Protein interaction revealed that CcMADS20 could form heterodimer with AP3-like proteins. Furthermore, ectopic overexpression of CcMADS20 in Arabidopsis resulted in transformation of sepals into petal-like structure, as observed in other plants overexpressing a functional PI-like homolog. Additionally, promoter fragments of CcMADS20 were also cloned in the representative 21 citrus varieties. Interestingly, four types of promoters were discovered in these citrus varieties, resulting from two stable insert/deletion fragments (Locus1 and Locus2). The homo/hetero-zygosity of promoter alleles in each variety was strongly related to the evolutionary origin of citrus. Four promoters activity analysis indicated that Locus1 presence inhibited CcMADS20 transcriptional activity and Locus2 presence promoted its transcriptional activity. These findings suggested that CcMADS20 determines petal and stamen development during the evolutionary process of citrus and four promoters discovered, as effective genetic markers, are valuable for citrus breeding practices.


Asunto(s)
Arabidopsis , Citrus , Arabidopsis/metabolismo , Citrus/genética , Citrus/metabolismo , Proteínas de Dominio MADS/metabolismo , Filogenia , Fitomejoramiento
6.
Front Genet ; 13: 1043178, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36468015

RESUMEN

Kiwifruit (Actinidia chinensis Planch.) is a functionally dioecious plant, which displays diverse morphology in male and female flowers. MADS-box is an ancient and huge gene family that plays a key role in plant floral organ differentiation. In this study, we have identified 89 MADS-box genes from A. chinensis Red 5 genome. These genes are distributed on 26 chromosomes and are classified into type I (21 genes) and type II (68 genes). Overall, type II AcMADS-box genes have more complex structures than type I with more exons, protein domains, and motifs, indicating that type II genes may have more diverse functions. Gene duplication analysis showed that most collinearity occurred in type II AcMADS-box genes, which was consistent with a large number of type II genes. Analysis of cis-acting elements in promoters showed that AcMADS-box genes are mainly associated with light and phytohormone responsiveness. The expression profile of AcMADS-box genes in different tissues showed that most genes were highly expressed in flowers. Further, the qRT-PCR analysis of the floral organ ABCDE model-related genes in male and female flowers revealed that AcMADS4, AcMADS56, and AcMADS70 were significantly expressed in female flowers. It indicated that those genes may play an important role in the sex differentiation of kiwifruit. This work provided a comprehensive analysis of the AcMADS-box genes and may help facilitate our understanding of the sex differentiation regulatory mechanism in kiwifruit.

7.
Hortic Res ; 9: uhac056, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35702366

RESUMEN

The long juvenile period of perennial woody plants is a major constraint in breeding programs. FLOWERING LOCUS T (FT) protein is an important mobile florigen signal that induces plant flowering. However, whether FT can be transported in woody plants to shorten the juvenile period is unknown, and its transport mechanism remains unclear. In this study, trifoliate orange FT (ToFT) and Arabidopsis FT (AtFT, which has been confirmed to be transportable in Arabidopsis) as a control were transformed into tomato and trifoliate orange, and early flowering was induced in the transgenic plants. Long-distance and two-way (upward and downward) transmission of ToFT and AtFT proteins was confirmed in both tomato and trifoliate orange using grafting and western blot analysis. However, rootstocks of transgenic trifoliate orange could not induce flowering in grafted wild-type juvenile scions because of the low accumulation of total FT protein in the grafted scions. It was further confirmed that endogenous ToFT protein was reduced in trifoliate orange, and the accumulation of the transported ToFT and AtFT proteins was lower than that in grafted juvenile tomato scions. Furthermore, the trifoliate orange FT-INTERACTING PROTEIN1 homolog (ToFTIP1) was isolated by yeast two-hybrid analysis. The FTIP1 homolog may regulate FT transport by interacting with FT in tomato and trifoliate orange. Our findings suggest that FT transport may be conserved between the tomato model and woody plants. However, in woody plants, the transported FT protein did not accumulate in significant amounts in the grafted wild-type juvenile scions and induce the scions to flower.

8.
Oxid Med Cell Longev ; 2019: 4248529, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30881590

RESUMEN

Hypoxic-ischemic encephalopathy (HIE) is detrimental to newborns and is associated with high mortality and poor prognosis. Thus, the primary aim of the present study was to determine whether glycine could (1) attenuate HIE injury in rats and hypoxic stress in PC12 cells and (2) downregulate mitochondria-mediated autophagy dependent on the adenosine monophosphate- (AMP-) activated protein kinase (AMPK) pathway. Experiments conducted using an in vivo HIE animal model and in vitro hypoxic stress to PC12 cells revealed that intense autophagy associated with mitochondrial function occurred during in vivo HIE injury and in vitro hypoxic stress. However, glycine treatment effectively attenuated mitochondria-mediated autophagy. Additionally, after identifying alterations in proteins within the AMPK pathway in rats and PC12 cells following glycine treatment, cyclosporin A (CsA) and 5-aminoimidazole-4-carboxamide-1-b-4-ribofuranoside (AICAR) were administered in these models and indicated that glycine protected against HIE and CoCl2 injury by downregulating mitochondria-mediated autophagy that was dependent on the AMPK pathway. Overall, glycine attenuated hypoxic-ischemic injury in neurons via reductions in mitochondria-mediated autophagy through the AMPK pathway both in vitro and in vivo.


Asunto(s)
Glicina/uso terapéutico , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Mitofagia/efectos de los fármacos , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Autofagia , Glicina/farmacología , Pronóstico , Ratas
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 30(9): 2139-41, 2010 Sep.
Artículo en Zh | MEDLINE | ID: mdl-20855272

RESUMEN

OBJECTIVE: To explore the association between hyperbilirubinemia and apnea in premature infants. METHODS: Premature infants with apnea and birth weight >1500 g were tested for the heart rate, serum level of bilirubin, saturation of blood oxygen (SO2) and partial pressure of oxygen (PO2) before and after treatment, with term infants serving as the control. A comparative analyses of the serum level of bilirubin, SO2 and PO2 were carried out in the premature infants with birth weight <1500 g suffering apneic syndrome or not on the first and third days after birth. RESULTS: Of the premature and term infants with apnea and birth weight <1500 g, 92.5% and 70.00% showed increased serum level of indirect bilirubin (IBIL), respectively. The infants with birth weight <1500 g who presented the syndrome of apnea on the first day after birth had significantly higher levels of IBIL than those without an apparent syndrome of apnea. A three-day conventional therapy resulted in an obvious improvement of apneic syndrome and lowered bilirubin level. CONCLUSION: Increased bilirubin level can be one of the reasons for the development of apnea in premature infants, and therapies for reducing bilirubin level can ameliorate the syndrome of apnea.


Asunto(s)
Apnea/complicaciones , Bilirrubina/sangre , Hiperbilirrubinemia/complicaciones , Recien Nacido Prematuro , Apnea/sangre , Femenino , Humanos , Recién Nacido , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA