Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 775
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 631(8022): 777-782, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987600

RESUMEN

Most of the state-of-the-art thermoelectric materials are inorganic semiconductors. Owing to the directional covalent bonding, they usually show limited plasticity at room temperature1,2, for example, with a tensile strain of less than five per cent. Here we discover that single-crystalline Mg3Bi2 shows a room-temperature tensile strain of up to 100 per cent when the tension is applied along the (0001) plane (that is, the ab plane). Such a value is at least one order of magnitude higher than that of traditional thermoelectric materials and outperforms many metals that crystallize in a similar structure. Experimentally, slip bands and dislocations are identified in the deformed Mg3Bi2, indicating the gliding of dislocations as the microscopic mechanism of plastic deformation. Analysis of chemical bonding reveals multiple planes with low slipping barrier energy, suggesting the existence of several slip systems in Mg3Bi2. In addition, continuous dynamic bonding during the slipping process prevents the cleavage of the atomic plane, thus sustaining a large plastic deformation. Importantly, the tellurium-doped single-crystalline Mg3Bi2 shows a power factor of about 55 microwatts per centimetre per kelvin squared and a figure of merit of about 0.65 at room temperature along the ab plane, which outperforms the existing ductile thermoelectric materials3,4.

2.
Nature ; 609(7927): 616-621, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917926

RESUMEN

The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development1,2. Here we present cryo-electron microscopy structures of PIN3 from Arabidopsis thaliana in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor N-1-naphthylphthalamic acid (NPA). A. thaliana PIN3 exists as a homodimer, and its transmembrane helices 1, 2 and 7 in the scaffold domain are involved in dimerization. The dimeric PIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. The PIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up-down rigid-body motions and the dimerized scaffold domains remain static.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Arabidopsis/química , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/ultraestructura , Transporte Biológico/efectos de los fármacos , Microscopía por Crioelectrón , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Ftalimidas/química , Ftalimidas/farmacología , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
3.
Mol Cell ; 79(2): 304-319.e7, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32679077

RESUMEN

Accurate regulation of innate immunity is necessary for the host to efficiently respond to invading pathogens and avoid excessive harmful immune pathology. Here we identified OTUD3 as an acetylation-dependent deubiquitinase that restricts innate antiviral immune signaling. OTUD3 deficiency in mice results in enhanced innate immunity, a diminished viral load, and morbidity. OTUD3 directly hydrolyzes lysine 63 (Lys63)-linked polyubiquitination of MAVS and thus shuts off innate antiviral immune response. Notably, the catalytic activity of OTUD3 relies on acetylation of its Lys129 residue. In response to virus infection, the acetylated Lys129 is removed by SIRT1, which promptly inactivates OTUD3 and thus allows timely induction of innate antiviral immunity. Importantly, acetyl-OTUD3 levels are inversely correlated with IFN-ß expression in influenza patients. These findings establish OTUD3 as a repressor of MAVS and uncover a previously unknown regulatory mechanism by which the catalytic activity of OTUD3 is tightly controlled to ensure timely activation of antiviral defense.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Inmunidad Innata , Gripe Humana/inmunología , Proteasas Ubiquitina-Específicas/fisiología , Células A549 , Acetilación , Adulto , Animales , Enzimas Desubicuitinizantes/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Ubiquitinación
4.
EMBO J ; 42(10): e113320, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37066886

RESUMEN

The eukaryotic vacuolar transporter chaperone (VTC) complex acts as a polyphosphate (polyP) polymerase that synthesizes polyP from adenosine triphosphate (ATP) and translocates polyP across the vacuolar membrane to maintain an intracellular phosphate (Pi ) homeostasis. To discover how the VTC complex performs its function, we determined a cryo-electron microscopy structure of an endogenous VTC complex (Vtc4/Vtc3/Vtc1) purified from Saccharomyces cerevisiae at 3.1 Å resolution. The structure reveals a heteropentameric architecture of one Vtc4, one Vtc3, and three Vtc1 subunits. The transmembrane region forms a polyP-selective channel, likely adopting a resting state conformation, in which a latch-like, horizontal helix of Vtc4 limits the entrance. The catalytic Vtc4 central domain is located on top of the pseudo-symmetric polyP channel, creating a strongly electropositive pathway for nascent polyP that can couple synthesis to translocation. The SPX domain of the catalytic Vtc4 subunit positively regulates polyP synthesis by the VTC complex. The noncatalytic Vtc3 regulates VTC through a phosphorylatable loop. Our findings, along with the functional data, allow us to propose a mechanism of polyP channel gating and VTC complex activation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Microscopía por Crioelectrón , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Polifosfatos/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(27): e2409257121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917009

RESUMEN

Dynamic protein structures are crucial for deciphering their diverse biological functions. Two-dimensional infrared (2DIR) spectroscopy stands as an ideal tool for tracing rapid conformational evolutions in proteins. However, linking spectral characteristics to dynamic structures poses a formidable challenge. Here, we present a pretrained machine learning model based on 2DIR spectra analysis. This model has learned signal features from approximately 204,300 spectra to establish a "spectrum-structure" correlation, thereby tracing the dynamic conformations of proteins. It excels in accurately predicting the dynamic content changes of various secondary structures and demonstrates universal transferability on real folding trajectories spanning timescales from microseconds to milliseconds. Beyond exceptional predictive performance, the model offers attention-based spectral explanations of dynamic conformational changes. Our 2DIR-based pretrained model is anticipated to provide unique insights into the dynamic structural information of proteins in their native environments.


Asunto(s)
Aprendizaje Automático , Proteínas , Espectrofotometría Infrarroja , Proteínas/química , Espectrofotometría Infrarroja/métodos , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína
6.
PLoS Pathog ; 20(8): e1012438, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39141662

RESUMEN

The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes severe and fatal acute respiratory disease in humans. High fatality rates and continued infectiousness remain a pressing concern for global health preparedness. Antibodies targeted at the receptor-binding domain (RBD) are major countermeasures against human viral infection. Here, we report four potent nanobodies against MERS-CoV, which are isolated from alpaca, and especially the potency of Nb14 is highest in the pseudotyped virus assay. Structural studies show that Nb14 framework regions (FRs) are mainly involved in interactions targeting a novel epitope, which is entirely distinct from all previously reported antibodies, and disrupt the protein-carbohydrate interaction between residue W535 of RBD and hDPP4 N229-linked carbohydrate moiety (hDPP4-N229-glycan). Different from Nb14, Nb9 targets the cryptic face of RBD, which is distinctive from the hDPP4 binding site and the Nb14 epitope, and it induces the ß5-ß6 loop to inflect towards a shallow groove of the RBD and dampens the accommodation of a short helix of hDPP4. The particularly striking epitopes endow the two Nbs administrate synergistically in the pseudotyped MERS-CoV assays. These results not only character unprecedented epitopes for antibody recognition but also provide promising agents for prophylaxis and therapy of MERS-CoV infection.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Coronavirus , Epítopos , Coronavirus del Síndrome Respiratorio de Oriente Medio , Anticuerpos de Dominio Único , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/química , Humanos , Epítopos/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Animales , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Camélidos del Nuevo Mundo/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Ratones , Receptores Virales/metabolismo , Receptores Virales/inmunología
7.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36567622

RESUMEN

Genomic recombination is an important driving force for viral evolution, and recombination events have been reported for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the Coronavirus Disease 2019 pandemic, which significantly alter viral infectivity and transmissibility. However, it is difficult to identify viral recombination, especially for low-divergence viruses such as SARS-CoV-2, since it is hard to distinguish recombination from in situ mutation. Herein, we applied information theory to viral recombination analysis and developed VirusRecom, a program for efficiently screening recombination events on viral genome. In principle, we considered a recombination event as a transmission process of ``information'' and introduced weighted information content (WIC) to quantify the contribution of recombination to a certain region on viral genome; then, we identified the recombination regions by comparing WICs of different regions. In the benchmark using simulated data, VirusRecom showed a good balance between precision and recall compared to two competing tools, RDP5 and 3SEQ. In the detection of SARS-CoV-2 XE, XD and XF recombinants, VirusRecom providing more accurate positions of recombination regions than RDP5 and 3SEQ. In addition, we encapsulated the VirusRecom program into a command-line-interface software for convenient operation by users. In summary, we developed a novel approach based on information theory to identify viral recombination within highly similar sequences, providing a useful tool for monitoring viral evolution and epidemic control.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Teoría de la Información , Filogenia , Recombinación Genética
8.
Nat Chem Biol ; 19(10): 1276-1285, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37550431

RESUMEN

Phe-Met-Arg-Phe-amide (FMRFamide)-activated sodium channels (FaNaCs) are a family of channels activated by the neuropeptide FMRFamide, and, to date, the underlying ligand gating mechanism remains unknown. Here we present the high-resolution cryo-electron microscopy structures of Aplysia californica FaNaC in both apo and FMRFamide-bound states. AcFaNaC forms a chalice-shaped trimer and possesses several notable features, including two FaNaC-specific insertion regions, a distinct finger domain and non-domain-swapped transmembrane helix 2 in the transmembrane domain (TMD). One FMRFamide binds to each subunit in a cleft located in the top-most region of the extracellular domain, with participation of residues from the neighboring subunit. Bound FMRFamide adopts an extended conformation. FMRFamide binds tightly to A. californica FaNaC in an N terminus-in manner, which causes collapse of the binding cleft and induces large local conformational rearrangements. Such conformational changes are propagated downward toward the TMD via the palm domain, possibly resulting in outward movement of the TMD and dilation of the ion conduction pore.


Asunto(s)
Activación del Canal Iónico , Neuropéptidos , FMRFamida/metabolismo , FMRFamida/farmacología , Microscopía por Crioelectrón , Neuropéptidos/metabolismo , Canales de Sodio/química , Canales de Sodio/metabolismo
9.
Nano Lett ; 24(9): 2931-2938, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38377049

RESUMEN

Plasmon-induced hot-electron transfer at the metallic nanoparticle/semiconductor interface is the basis of plasmon-enhanced photocatalysis and energy harvesting. However, limited by the nanoscale size of hot spots and femtosecond time scale of hot-electron transfer, direct observation is still challenging. Herein, by using spatiotemporal-resolved photoemission electron microscopy with a two-color pump-probe beamline, we directly observed such a process with a concise system, the Au nanoparticle/monolayer transition-metal dichalcogenide (TMD) interface. The ultrafast hot-electron transfer from Au nanoparticles to monolayer TMDs and the plasmon-enhanced transfer process were directly measured and verified through an in situ comparison with the Au film/TMD interface and free TMDs. The lifetime at the Au nanoparticle/MoSe2 interface decreased from 410 to 42 fs, while the photoemission intensities exhibited a 27-fold increase compared to free MoSe2. We also measured the evolution of hot electrons in the energy distributions, indicating the hot-electron injection and decay happened in an ultrafast time scale of ∼50 fs without observable electron cooling.

10.
J Biol Chem ; 299(6): 104780, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37142220

RESUMEN

The calcium-activated chloride channel TMEM16A is a potential drug target to treat hypertension, secretory diarrhea, and several cancers. However, all reported TMEM16A structures are either closed or desensitized, and direct inhibition of the open state by drug molecules lacks a reliable structural basis. Therefore, revealing the druggable pocket of TMEM16A exposed in the open state is important for understanding protein-ligand interactions and facilitating rational drug design. Here, we reconstructed the calcium-activated open conformation of TMEM16A using an enhanced sampling algorithm and segmental modeling. Furthermore, we identified an open-state druggable pocket and screened a potent TMEM16A inhibitor, etoposide, which is a derivative of a traditional herbal monomer. Molecular simulations and site-directed mutagenesis showed that etoposide binds to the open state of TMEM16A, thereby blocking the ion conductance pore of the channel. Finally, we demonstrated that etoposide can target TMEM16A to inhibit the proliferation of prostate cancer PC-3 cells. Together, these findings provide a deep understanding of the TMEM16A open state at an atomic level and identify pockets for the design of novel inhibitors with broad applications in chloride channel biology, biophysics, and medicinal chemistry.


Asunto(s)
Anoctamina-1 , Modelos Moleculares , Humanos , Masculino , Anoctamina-1/química , Anoctamina-1/metabolismo , Calcio/metabolismo , Etopósido/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Simulación por Computador
11.
J Am Chem Soc ; 146(4): 2663-2672, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38240637

RESUMEN

The structurally sensitive amide II infrared (IR) bands of proteins provide valuable information about the hydrogen bonding of protein secondary structures, which is crucial for understanding protein dynamics and associated functions. However, deciphering protein structures from experimental amide II spectra relies on time-consuming quantum chemical calculations on tens of thousands of representative configurations in solvent water. Currently, the accurate simulation of amide II spectra for whole proteins remains a challenge. Here, we present a machine learning (ML)-based protocol designed to efficiently simulate the amide II IR spectra of various proteins with an accuracy comparable to experimental results. This protocol stands out as a cost-effective and efficient alternative for studying protein dynamics, including the identification of secondary structures and monitoring the dynamics of protein hydrogen bonding under different pH conditions and during protein folding process. Our method provides a valuable tool in the field of protein research, focusing on the study of dynamic properties of proteins, especially those related to hydrogen bonding, using amide II IR spectroscopy.


Asunto(s)
Amidas , Inteligencia Artificial , Amidas/química , Enlace de Hidrógeno , Espectrofotometría Infrarroja/métodos , Proteínas/química
12.
Emerg Infect Dis ; 30(9): 1809-1818, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39106459

RESUMEN

We conducted a longitudinal cohort study of SARS-CoV-2 and influenza rates in childcare centers and schools in Wuxi, China, collecting 1,760 environmental samples and 9,214 throat swabs from 593 students (regardless of symptoms) in weekly collections during February-June 2023. We estimated a cumulative infection rate of 124.8 (74 episodes)/1,000 persons for SARS-CoV-2 and 128.2 (76 episodes)/1,000 persons for influenza. The highest SARS-CoV-2 infection rate was in persons 18 years of age, and for influenza, in children 4 years of age. The asymptomatic proportion of SARS-CoV-2 was 59.6% and 66.7% for influenza; SARS-CoV-2 symptomatic proportion was lower in 16-18-year-olds than in 4-6-year-olds. Only samples from frequently touched surface tested positive for SARS-CoV-2 (4/1,052) and influenza (1/1,052). We found asynchronous circulation patterns of SARS-CoV-2 and influenza, similar to trends in national sentinel surveillance. The results support vaccination among pediatric populations and other interventions, such as environmental disinfection in educational settings.


Asunto(s)
COVID-19 , Gripe Humana , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/virología , Niño , Gripe Humana/epidemiología , Gripe Humana/virología , Adolescente , China/epidemiología , Preescolar , Masculino , Femenino , Estudios Longitudinales , Lactante
13.
J Pharmacol Exp Ther ; 389(2): 163-173, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38453527

RESUMEN

Hepatocellular carcinoma (HCC) is the predominant pathologic type of primary liver cancer. It is a malignant tumor of liver epithelial cells. There are many ways to treat HCC, but the survival rate for HCC patients remains low. Therefore, understanding the underlying mechanisms by which HCC occurs and develops is critical to explore new therapeutic targets. Aldehyde dehydrogenase 2 (ALDH2) is an important player in the redox reaction of ethanol with endogenous aldehyde products released by lipid peroxidation. Increasing evidence suggests that ALDH2 is a crucial regulator of human tumor development, including HCC. Therefore, clarifying the relationship between ALDH2 and HCC is helpful for formulating rational treatment strategies. This review highlights the regulatory roles of ALDH2 in the development of HCC, elucidates the multiple potential mechanisms by which ALDH2 regulates the development of HCC, and summarizes the progress of research on ALDH2 gene polymorphisms and HCC susceptibility. Meanwhile, we envision viable strategies for targeting ALDH2 in the treatment of HCC SIGNIFICANCE STATEMENT: Numerous studies have aimed to explore novel therapeutic targets for HCC, and ALDH2 has been reported to be a critical regulator of HCC progression. This review discusses the functions, molecular mechanisms, and clinical significance of ALDH2 in the development of HCC and examines the prospects of ALDH2-based therapy for HCC.


Asunto(s)
Aldehído Oxidorreductasas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Aldehído Deshidrogenasa , Aldehído Deshidrogenasa Mitocondrial/genética
14.
Bioinformatics ; 39(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36916746

RESUMEN

MOTIVATION: Computational protein sequence design has been widely applied in rational protein engineering and increasing the design accuracy and efficiency is highly desired. RESULTS: Here, we present ProDESIGN-LE, an accurate and efficient approach to protein sequence design. ProDESIGN-LE adopts a concise but informative representation of the residue's local environment and trains a transformer to learn the correlation between local environment of residues and their amino acid types. For a target backbone structure, ProDESIGN-LE uses the transformer to assign an appropriate residue type for each position based on its local environment within this structure, eventually acquiring a designed sequence with all residues fitting well with their local environments. We applied ProDESIGN-LE to design sequences for 68 naturally occurring and 129 hallucinated proteins within 20 s per protein on average. The designed proteins have their predicted structures perfectly resembling the target structures with a state-of-the-art average TM-score exceeding 0.80. We further experimentally validated ProDESIGN-LE by designing five sequences for an enzyme, chloramphenicol O-acetyltransferase type III (CAT III), and recombinantly expressing the proteins in Escherichia coli. Of these proteins, three exhibited excellent solubility, and one yielded monomeric species with circular dichroism spectra consistent with the natural CAT III protein. AVAILABILITY AND IMPLEMENTATION: The source code of ProDESIGN-LE is available at https://github.com/bigict/ProDESIGN-LE.


Asunto(s)
Proteínas , Programas Informáticos , Secuencia de Aminoácidos , Proteínas/química
15.
Bioconjug Chem ; 35(2): 203-213, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38343092

RESUMEN

The field of clinical surgery frequently encounters challenges related to atypical wound tissue healing, resulting in the development of persistent chronic wounds or aesthetically displeasing scar tissue. The use of wound dressings crafted from mussel adhesive proteins and hyaluronic acid has demonstrated the potential in mitigating these undesirable outcomes. However, the synergistic effects of these two biomaterials remain underexplored. In this study, we have engineered a versatile, degradable, and biocompatible dressing that comprises recombinant 3,4-dihydroxyphenylalanine (DOPA)-modified mussel adhesive proteins and maleimide-functionalized hyaluronic acid. We have successfully fabricated this biocompatible dressing and conducted comprehensive experimental assessments to confirm its hemostatic, antibacterial, and biocompatible characteristics. Importantly, this dressing exclusively incorporates biologically derived materials characterized by low toxicity and minimal immunogenicity, thus holding immense promise for clinical applications in the field of wound healing.


Asunto(s)
Hemostáticos , Hemostáticos/farmacología , Hemostáticos/uso terapéutico , Cisteína , Ácido Hialurónico , Antibacterianos/farmacología , Vendajes , Maleimidas
16.
Org Biomol Chem ; 22(7): 1495-1499, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38293848

RESUMEN

We hereby report the ortho-cyanomethylation of aryl fluoroalkyl sulfoxides with acetonitrile through a sulfonium-Claisen-type rearrangement. This reaction enables the incorporation of two valuable functional groups, such as the cyanomethyl group and the fluoroalkylthio group, into arenes. Remarkably, fluoroalkylthio groups, such as SCFH2 and SCF2H, bearing active hydrogen, are well tolerated by the reaction. The success of the reaction relies on the use of an excess amount of acetonitrile and the electronegative effect of fluoroalkyl substituents, both of which promote the electrophilic assembly of sulfoxides with acetonitrile. Consequently, the sulfonium-Claisen rearrangement reaction tolerates a wide variety of fluoroalkyl sulfoxides bearing functional groups including halides, nitriles, ketones, sulfones, and amides, which are appealing for subsequent elaboration and exploration.

17.
Phys Chem Chem Phys ; 26(13): 10408-10418, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38502252

RESUMEN

Nuclear transition protein TNP1 is a crucial player mediating histone-protamine exchange in condensing spermatids. A unique combination of intrinsic disorder and multivalent properties turns TNP1 into an ideal agent for orchestrating the formation of versatile TNP-DNA assemblies. Despite its significance, the physicochemical property and the molecular mechanism followed by TNP1 for histone replacement and DNA condensation are still poorly understood. This study reports the first-time in vitro expression and purification of human TNP1 and investigates the hierarchical dynamics of TNP1-DNA interaction using a combination of computational simulations, biochemical assays, fluorescence imaging, and atomic force microscopy. We explored three crucial facets of TNP1-DNA interactions. Initially, we delve into the molecular binding process that entails fuzzy interactions between TNP1 and DNA at the atomistic scale. Subsequently, we analyze how TNP1 binding affects the electrostatic and mechanical characteristics of DNA and influences its morphology. Finally, we study the biomolecular condensation of TNP1-DNA when subjected to high concentrations. The findings of our study set the foundation for comprehending the potential involvement of TNP1 in histone replacement and DNA condensation in spermatogenesis.


Asunto(s)
Proteínas Cromosómicas no Histona , Histonas , Masculino , Humanos , Histonas/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Proteínas Nucleares
18.
Nature ; 556(7702): 520-524, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29670288

RESUMEN

Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor superfamily and have important roles in food intake, anxiety and cancer biology 1,2 . The NPY-Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in most mammals, namely the Y1, Y2, Y4 and Y5 receptors, with different affinity and selectivity 3 . NPY is the most powerful stimulant of food intake and this effect is primarily mediated by the Y1 receptor (Y1R) 4 . A number of peptides and small-molecule compounds have been characterized as Y1R antagonists and have shown clinical potential in the treatment of obesity 4 , tumour 1 and bone loss 5 . However, their clinical usage has been hampered by low potency and selectivity, poor brain penetration ability or lack of oral bioavailability 6 . Here we report crystal structures of the human Y1R bound to the two selective antagonists UR-MK299 and BMS-193885 at 2.7 and 3.0 Å resolution, respectively. The structures combined with mutagenesis studies reveal the binding modes of Y1R to several structurally diverse antagonists and the determinants of ligand selectivity. The Y1R structure and molecular docking of the endogenous agonist NPY, together with nuclear magnetic resonance, photo-crosslinking and functional studies, provide insights into the binding behaviour of the agonist and for the first time, to our knowledge, determine the interaction of its N terminus with the receptor. These insights into Y1R can enable structure-based drug discovery that targets NPY receptors.


Asunto(s)
Arginina/análogos & derivados , Dihidropiridinas/química , Dihidropiridinas/metabolismo , Ácidos Difenilacéticos/química , Ácidos Difenilacéticos/metabolismo , Neuropéptido Y/metabolismo , Compuestos de Fenilurea/química , Compuestos de Fenilurea/metabolismo , Receptores de Neuropéptido Y/antagonistas & inhibidores , Receptores de Neuropéptido Y/química , Arginina/química , Arginina/metabolismo , Arginina/farmacología , Sitios de Unión , Cristalografía por Rayos X , Dihidropiridinas/farmacología , Ácidos Difenilacéticos/farmacología , Humanos , Fosfatos de Inositol/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación , Neuropéptido Y/química , Neuropéptido Y/farmacología , Resonancia Magnética Nuclear Biomolecular , Compuestos de Fenilurea/farmacología , Unión Proteica , Receptores de Neuropéptido Y/agonistas , Receptores de Neuropéptido Y/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
19.
BMC Pediatr ; 24(1): 534, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164645

RESUMEN

BACKGROUND: Catheter-related thrombosis (CRT) is a thrombotic complication associated with using central venous catheters (CVCs). Although risk factors for CRT were identified in children, no nomograms or predictive tools are available for the pediatric population with CVCs. This study aimed to develop and validate a prediction model of asymptomatic CRT in children with CVCs. METHODS: This retrospective observational study included consecutive pediatric patients who admitted to the Children's Hospital Zhejiang University School of Medicine and received CVCs between October and December 2021. RESULTS: This study included 669 patients, 553 (314 males, aged 22.00 [0.36, 180.00] months, 62 with CRT) were in the training set, and 116 (62 males, aged 15.00 [1.13, 156.00] months, 16 with CRT) were in the validation set. Multivariate logistic regression showed that a catheter time of 0-3 days (OR = 0.201, 95%CI: 0.081-0.497, P = 0.001), catheter time of 4-7 days (OR = 0.412, 95%CI: 0.176-0.964, P = 0.041), male (OR = 3.976, 95%CI: 1.864-4.483, P < 0.001), congenital heart diseases (OR = 0.277, 95%CI: 0.078-0.987, P = 0.048), postoperative (OR = 0.161, 95%CI: 0.072-0.360, P < 0.001), and femoral CVC (OR = 2.451, 95%CI: 1.129-5.318, P = 0.002) were independently associated with CRT. The nomogram incorporating these variables showed relatively good discrimination (AUC = 0.77, 95%CI: [0.65, 0.90]) and calibration abilities in the validation set, and the decision curve analysis (DCA) yielded a clinical net benefit. CONCLUSION: A prediction model for CRT in children with CVC was established based on catheter time, sex, diseases, postoperative, and catheter vein. The nomogram based on logistic regression model showed favorable predictive performance.


Asunto(s)
Catéteres Venosos Centrales , Nomogramas , Humanos , Masculino , Estudios Retrospectivos , Femenino , Niño , Adolescente , Lactante , Preescolar , Catéteres Venosos Centrales/efectos adversos , Factores de Riesgo , Trombosis/etiología , Trombosis/diagnóstico , Cateterismo Venoso Central/efectos adversos , Recién Nacido , Modelos Logísticos
20.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34185681

RESUMEN

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), invades a human cell via human angiotensin-converting enzyme 2 (hACE2) as the entry, causing the severe coronavirus disease (COVID-19). The interactions between hACE2 and the spike glycoprotein (S protein) of SARS-CoV-2 hold the key to understanding the molecular mechanism to develop treatment and vaccines, yet the dynamic nature of these interactions in fluctuating surroundings is very challenging to probe by those structure determination techniques requiring the structures of samples to be fixed. Here we demonstrate, by a proof-of-concept simulation of infrared (IR) spectra of S protein and hACE2, that time-resolved spectroscopy may monitor the real-time structural information of the protein-protein complexes of interest, with the help of machine learning. Our machine learning protocol is able to identify fine changes in IR spectra associated with variation of the secondary structures of S protein of the coronavirus. Further, it is three to four orders of magnitude faster than conventional quantum chemistry calculations. We expect our machine learning protocol would accelerate the development of real-time spectroscopy study of protein dynamics.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Aprendizaje Automático , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/química , Humanos , Cinética , Unión Proteica , Estructura Secundaria de Proteína , Espectrofotometría Infrarroja , Glicoproteína de la Espiga del Coronavirus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA