Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cytotherapy ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38520412

RESUMEN

Stem cells have gained attention as a promising therapeutic approach for damaged myocardium, and there have been efforts to develop a protocol for regenerating cardiomyocytes (CMs). Certain cells have showed a greater aptitude for yielding beating CMs, such as induced pluripotent stem cells, embryonic stem cells, adipose-derived stromal vascular fraction cells and extended pluripotent stem cells. The approach for generating CMs from stem cells differs across studies, although there is evidence that Wnt signaling, chemical additives, electrical stimulation, co-culture, biomaterials and transcription factors triggers CM differentiation. Upregulation of Gata4, Mef2c and Tbx5 transcription factors has been correlated with successfully induced CMs, although Mef2c may potentially play a more prominent role in the generation of the beating phenotype, specifically. Regenerative research provides a possible candidate for cardiac repair; however, it is important to identify factors that influence their differentiation. Altogether, the spontaneously beating CMs would be monumental for regenerative research for cardiac repair.

2.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892443

RESUMEN

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a prevalent infectious disease affecting populations worldwide. A classic trait of TB pathology is the formation of granulomas, which wall off the pathogen, via the innate and adaptive immune systems. Some key players involved include tumor necrosis factor-alpha (TNF-α), foamy macrophages, type I interferons (IFNs), and reactive oxygen species, which may also show overlap with cell death pathways. Additionally, host cell death is a primary method for combating and controlling Mtb within the body, a process which is influenced by both host and bacterial factors. These cell death modalities have distinct molecular mechanisms and pathways. Programmed cell death (PCD), encompassing apoptosis and autophagy, typically confers a protective response against Mtb by containing the bacteria within dead macrophages, facilitating their phagocytosis by uninfected or neighboring cells, whereas necrotic cell death benefits the pathogen, leading to the release of bacteria extracellularly. Apoptosis is triggered via intrinsic and extrinsic caspase-dependent pathways as well as caspase-independent pathways. Necrosis is induced via various pathways, including necroptosis, pyroptosis, and ferroptosis. Given the pivotal role of host cell death pathways in host defense against Mtb, therapeutic agents targeting cell death signaling have been investigated for TB treatment. This review provides an overview of the diverse mechanisms underlying Mtb-induced host cell death, examining their implications for host immunity. Furthermore, it discusses the potential of targeting host cell death pathways as therapeutic and preventive strategies against Mtb infection.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/inmunología , Tuberculosis/microbiología , Tuberculosis/patología , Animales , Muerte Celular/inmunología , Interacciones Huésped-Patógeno/inmunología , Apoptosis , Inmunidad Innata , Autofagia/inmunología , Transducción de Señal , Macrófagos/inmunología , Macrófagos/microbiología
3.
Viruses ; 16(3)2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543687

RESUMEN

The co-occurrence of human immunodeficiency virus (HIV) and tuberculosis (TB) infection poses a significant global health challenge. Treatment of HIV and TB co-infection often necessitates combination therapy involving antiretroviral therapy (ART) for HIV and anti-TB medications, which introduces the potential for drug-drug interactions (DDIs). These interactions can significantly impact treatment outcomes, the efficacy of treatment, safety, and overall patient well-being. This review aims to provide a comprehensive analysis of the DDIs between anti-HIV and anti-TB drugs as well as potential adverse effects resulting from the concomitant use of these medications. Furthermore, such findings may be used to develop personalized therapeutic strategies, dose adjustments, or alternative drug choices to minimize the risk of adverse outcomes and ensure the effective management of HIV and TB co-infection.


Asunto(s)
Fármacos Anti-VIH , Coinfección , Infecciones por VIH , Tuberculosis , Humanos , Coinfección/tratamiento farmacológico , Coinfección/complicaciones , VIH , Tuberculosis/complicaciones , Tuberculosis/tratamiento farmacológico , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Interacciones Farmacológicas , Fármacos Anti-VIH/efectos adversos
4.
Biomedicines ; 11(9)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37761009

RESUMEN

Tuberculosis meningitis (TBM) is a result of the invasion of the meninges with the bacilli of Mycobacterium tuberculosis (Mtb), leading to inflammation of the meninges around the brain or spinal cord. Oxidative stress occurs when the body's cells become overwhelmed with free radicals, particularly reactive oxygen species (ROS). ROS plays a significant role in the pathogenesis of TBM due to their toxic nature, resulting in impairment of the body's ability to fight off infection. ROS damages the endothelial cells and impairs the defense mechanisms of the blood-brain barrier (BBB), which contributes to CNS susceptibility to the bacteria causing TBM. Diabetes mellitus (DM) is a common condition that is characterized by the impairment of the hormone insulin, which is responsible for modulating blood glucose levels. The increased availability of glucose in individuals with diabetes results in increased cellular activity and metabolism, leading to heightened ROS production and, in turn, increased susceptibility to TBM. In this review, we summarize our current understanding of oxidative stress and its role in both TBM and DM. We further discuss how increased oxidative stress in DM can contribute to the likelihood of developing TBM and potential therapeutic approaches that may be of therapeutic value.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA