Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(3): e1011241, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930690

RESUMEN

Dengue virus (DENV) infection can induce life-threatening dengue hemorrhagic fever/dengue shock syndrome in infected patients. DENV is a threat to global health due to its growing numbers and incidence of infection in the last 50 years. During infection, DENV expresses ten structural and nonstructural proteins modulating cell responses to benefit viral replication. However, the lack of knowledge regarding the cellular proteins and their functions in enhancing DENV pathogenesis impedes the development of antiviral drugs and therapies against fatal DENV infection. Here, we identified that integrin-linked kinase (ILK) is a novel enhancing factor for DENV infection by suppressing type I interferon (IFN) responses. Mechanistically, ILK binds DENV NS1 and NS3, activates Akt and Erk, and induces NF-κB-driven suppressor of cytokine signaling 3 (SOCS3) expression. Elevated SOCS3 in DENV-infected cells inhibits phosphorylation of STAT1/2 and expression of interferon-stimulated genes (ISGs). Inhibiting ILK, Akt, or Erk activation abrogates SOCS3 expression. In DENV-infected mice, the treatment of an ILK inhibitor significantly reduces viral loads in the brains, disease severity, and mortality rate. Collectively, our results show that ILK is a potential therapeutic target against DENV infection.


Asunto(s)
Virus del Dengue , Dengue , Interferón Tipo I , Animales , Ratones , Virus del Dengue/fisiología , Proteínas Proto-Oncogénicas c-akt , Replicación Viral , Interferón Tipo I/uso terapéutico
2.
PLoS Pathog ; 18(4): e1010469, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35486576

RESUMEN

Dengue virus (DENV) which infects about 390 million people per year in tropical and subtropical areas manifests various disease symptoms, ranging from fever to life-threatening hemorrhage and even shock. To date, there is still no effective treatment for DENV disease, but only supportive care. DENV nonstructural protein 1 (NS1) has been shown to play a key role in disease pathogenesis. Recent studies have shown that anti-DENV NS1 antibody can provide disease protection by blocking the DENV-induced disruption of endothelial integrity. We previously demonstrated that anti-NS1 monoclonal antibody (mAb) protected mice from all four serotypes of DENV challenge. Here, we generated humanized anti-NS1 mAbs and transferred them to mice after DENV infection. The results showed that DENV-induced prolonged bleeding time and skin hemorrhage were reduced, even several days after DENV challenge. Mechanistic studies showed the ability of humanized anti-NS1 mAbs to inhibit NS1-induced vascular hyperpermeability and to elicit Fcγ-dependent complement-mediated cytolysis as well as antibody-dependent cellular cytotoxicity of cells infected with four serotypes of DENV. These results highlight humanized anti-NS1 mAb as a potential therapeutic agent in DENV infection.


Asunto(s)
Virus del Dengue , Dengue , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Dengue/prevención & control , Modelos Animales de Enfermedad , Hemorragia/etiología , Humanos , Ratones , Proteínas no Estructurales Virales/metabolismo
3.
J Biomed Sci ; 31(1): 39, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637878

RESUMEN

BACKGROUND: High levels of neutrophil extracellular trap (NET) formation or NETosis and autoantibodies are related to poor prognosis and disease severity of COVID-19 patients. Human angiotensin-converting enzyme 2 (ACE2) cross-reactive anti-severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain (SARS-CoV-2 RBD) antibodies (CR Abs) have been reported as one of the sources of anti-ACE2 autoantibodies. However, the pathological implications of CR Abs in NET formation remain unknown. METHODS: In this study, we first assessed the presence of CR Abs in the sera of COVID-19 patients with different severity by serological analysis. Sera and purified IgG from CR Abs positive COVID-19 patients as well as a mouse monoclonal Ab (mAb 127) that can recognize both ACE2 and the RBD were tested for their influence on NETosis and the possible mechanisms involved were studied. RESULTS: An association between CR Abs levels and the severity of COVID-19 in 120 patients was found. The CR Abs-positive sera and IgG from severe COVID-19 patients and mAb 127 significantly activated human leukocytes and triggered NETosis, in the presence of RBD. This NETosis, triggered by the coexistence of CR Abs and RBD, activated thrombus-related cells but was abolished when the interaction between CR Abs and ACE2 or Fc receptors was disrupted. We also revealed that CR Abs-induced NETosis was suppressed in the presence of recombinant ACE2 or the Src family kinase inhibitor, dasatinib. Furthermore, we found that COVID-19 vaccination not only reduced COVID-19 severity but also prevented the production of CR Abs after SARS-CoV-2 infection. CONCLUSIONS: Our findings provide possible pathogenic effects of CR Abs in exacerbating COVID-19 by enhancing NETosis, highlighting ACE2 and dasatinib as potential treatments, and supporting the benefit of vaccination in reducing disease severity and CR Abs production in COVID-19 patients.


Asunto(s)
COVID-19 , Humanos , Animales , Ratones , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Vacunas contra la COVID-19 , Dasatinib , Inmunoglobulina G/metabolismo , Autoanticuerpos/metabolismo , Glicoproteína de la Espiga del Coronavirus , Unión Proteica
4.
PLoS Pathog ; 15(4): e1007625, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31009511

RESUMEN

Dengue virus (DENV) infection, the most common mosquito-transmitted viral infection, can cause a range of diseases from self-limiting dengue fever to life-threatening dengue hemorrhagic fever and shock syndrome. Thrombocytopenia is a major characteristic observed in both mild and severe dengue disease and is significantly correlated with the progression of dengue severity. Previous studies have shown that DENV nonstructural protein 1 (NS1), which can be secreted into patients' blood, can stimulate immune cells via Toll-like receptor 4 (TLR4) and can cause endothelial leakage. However, it is unclear whether DENV NS1 can directly induce platelet activation or cause thrombocytopenia during DENV infection. In this study, we first demonstrated that DENV but not Zika virus cell culture supernatant could induce P-selectin expression and phosphatidylserine (PS) exposure in human platelets, both of which were abolished when NS1 was depleted from the DENV supernatant. Similar results were found using recombinant NS1 from all four serotypes of DENV, and those effects were blocked in the presence of anti-NS1 F(ab')2, anti-TLR4 antibody, a TLR4 antagonist (Rhodobacter sphaeroides lipopolysaccharide, LPS-Rs) and a TLR4 signaling inhibitor (TAK242), but not polymyxin B (an LPS inhibitor). Moreover, the activation of platelets by DENV NS1 promoted subthreshold concentrations of adenosine diphosphate (ADP)-induced platelet aggregation and enhanced platelet adhesion to endothelial cells and phagocytosis by macrophages. Finally, we demonstrated that DENV-induced thrombocytopenia and hemorrhage were attenuated in TLR4 knockout and wild-type mice when NS1 was depleted from DENV supernatant. Taken together, these results suggest that the binding of DENV NS1 to TLR4 on platelets can trigger its activation, which may contribute to thrombocytopenia and hemorrhage during dengue infection.


Asunto(s)
Plaquetas/inmunología , Dengue/complicaciones , Hemorragia/etiología , Macrófagos/inmunología , Trombocitopenia/etiología , Receptor Toll-Like 4/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Plaquetas/metabolismo , Plaquetas/patología , Células Cultivadas , Dengue/metabolismo , Dengue/virología , Virus del Dengue/inmunología , Hemorragia/metabolismo , Hemorragia/patología , Humanos , Lipopolisacáridos/toxicidad , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Fagocitosis , Trombocitopenia/metabolismo , Trombocitopenia/patología
5.
J Immunol ; 203(7): 1909-1917, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31451673

RESUMEN

Dengue virus (DENV) causes a range of illness, including dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. DENV nonstructural protein (NS) 1 has been considered to be a desirable vaccine candidate for its ability to induce Ab and complement-dependent cytolysis of DENV-infected cells as well as to block the pathogenic effects of NS1. However a potential drawback of NS1 as a vaccine is that anti-DENV NS1 Abs can lead to endothelial cell damage and platelet dysfunction by antigenic cross-reactivity. Therefore, we modified the DENV NS1 by replacing the C-terminal cross-reactive epitopes with the corresponding region of Japanese encephalitis virus NS1 to generate a chimeric DJ NS1 protein. Active immunization with DJ NS1 induced a strong Ab response. To enhance cellular immunity, we further combined DJ NS1 with DENV NS3 to immunize mice and showed activation of Ag-specific CD4+ and CD8+ T cells in addition to Ab responses. We further detected NS3-specific CTL activities as well as CD107a expression of effector cells. Importantly, the protective effects attributed by DJ NS1 and NS3 immunization were demonstrated in a DENV-infected mouse model by reduced viral titers, soluble NS1 levels, mouse tail bleeding time, and vascular leakage at skin injection sites. Collectively, the results from this study reveal the humoral and cellular immune responses and the protective effects conferred by DJ NS1 and NS3 immunization in the mouse model of DENV infection and provide a potential strategy for dengue vaccine design.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Dengue/inmunología , Virus del Dengue/inmunología , Dengue/prevención & control , Inmunidad Celular , Inmunización , Proteínas no Estructurales Virales/inmunología , Animales , Reacciones Cruzadas , Dengue/inmunología , Dengue/patología , Epítopos/inmunología , Masculino , Ratones
6.
PLoS Pathog ; 14(4): e1007033, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29702687

RESUMEN

Vascular leakage is one of the salient characteristics of severe dengue. Nonstructural protein 1 (NS1) of dengue virus (DENV) can stimulate endothelial cells to secrete endothelial hyperpermeability factor, macrophage migration inhibitory factor (MIF), and the glycocalyx degradation factor heparanase 1 (HPA-1). However, it is unclear whether MIF is directly involved in NS1-induced glycocalyx degradation. In this study, we observed that among NS1, MIF and glycocalyx degradation-related molecules, the HPA-1, metalloproteinase 9 (MMP-9) and syndecan 1 (CD138) serum levels were all increased in dengue patients, and only NS1 and MIF showed a positive correlation with the CD138 level in severe patients. To further characterize and clarify the relationship between MIF and CD138, we used recombinant NS1 to stimulate human cells in vitro and challenge mice in vivo. Our tabulated results suggested that NS1 stimulation could induce human endothelial cells to secrete HPA-1 and immune cells to secrete MMP-9, resulting in endothelial glycocalyx degradation and hyperpermeability. Moreover, HPA-1, MMP-9, and CD138 secretion after NS1 stimulation was blocked by MIF inhibitors or antibodies both in vitro and in mice. Taken together, these results suggest that MIF directly engages in dengue NS1-induced glycocalyx degradation and that targeting MIF may represent a possible therapeutic approach for preventing dengue-induced vascular leakage.


Asunto(s)
Virus del Dengue/aislamiento & purificación , Células Endoteliales/virología , Glicocálix/virología , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Animales , Permeabilidad Capilar/fisiología , Línea Celular/virología , Dengue/inmunología , Virus del Dengue/inmunología , Células Endoteliales/metabolismo , Humanos , Oxidorreductasas Intramoleculares/metabolismo , Ratones Transgénicos , Proteínas no Estructurales Virales/metabolismo
7.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352639

RESUMEN

Dengue virus (DENV) infection is a significant public health threat in tropical and subtropical regions; however, there is no specific antiviral drug. Accumulated studies have revealed that DENV infection induces several cellular responses, including autophagy and apoptosis. The crosstalk between autophagy and apoptosis is associated with the interactions among components of these two pathways, such as apoptotic caspase-mediated cleavage of autophagy-related proteins. Here, we show that DENV-induced autophagy inhibits early cell apoptosis and hence enhances DENV replication. Later, the apoptotic activities are elevated to suppress autophagy through cleavage of Beclin-1, an essential autophagy-related protein. Inhibition of cleavage of Beclin-1 by a pan-caspase inhibitor, Z-VAD, increases both autophagy and viral replication. Regarding the mechanism, we further found that DENV nonstructural protein 1 (NS1) is able to interact with Beclin-1 during DENV infection. The interaction between Beclin-1 and NS1 attenuates Beclin-1 cleavage and facilitates autophagy to prevent cell apoptosis. Our study suggests a novel mechanism whereby NS1 preserves Beclin-1 for maintaining autophagy to antagonize early cell apoptosis; however, elevated caspases trigger apoptosis by degrading Beclin-1 in the late stage of infection. These findings suggest implications for anti-DENV drug design.


Asunto(s)
Beclina-1/metabolismo , Caspasas/metabolismo , Virus del Dengue/aislamiento & purificación , Dengue/patología , Dengue/virología , Proteínas no Estructurales Virales/metabolismo , Células A549 , Aedes , Animales , Autofagia , Dengue/metabolismo , Humanos
8.
J Immunol ; 199(8): 2834-2844, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28904127

RESUMEN

Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome and is endemic to tropical and subtropical regions of the world. Our previous studies showed the existence of epitopes in the C-terminal region of DENV nonstructural protein 1 (NS1) which are cross-reactive with host Ags and trigger anti-DENV NS1 Ab-mediated endothelial cell damage and platelet dysfunction. To circumvent these potentially harmful events, we replaced the C-terminal region of DENV NS1 with the corresponding region from Japanese encephalitis virus NS1 to create chimeric DJ NS1 protein. Passive immunization of DENV-infected mice with polyclonal anti-DJ NS1 Abs reduced viral Ag expression at skin inoculation sites and shortened DENV-induced prolonged bleeding time. We also investigated the therapeutic effects of anti-NS1 mAb. One mAb designated 2E8 does not recognize the C-terminal region of DENV NS1 in which host-cross-reactive epitopes reside. Moreover, mAb 2E8 recognizes NS1 of all four DENV serotypes. We also found that mAb 2E8 caused complement-mediated lysis in DENV-infected cells. In mouse model studies, treatment with mAb 2E8 shortened DENV-induced prolonged bleeding time and reduced viral Ag expression in the skin. Importantly, mAb 2E8 provided therapeutic effects against all four serotypes of DENV. We further found that mAb administration to mice as late as 1 d prior to severe bleeding still reduced prolonged bleeding time and hemorrhage. Therefore, administration with a single dose of mAb 2E8 can protect mice against DENV infection and pathological effects, suggesting that NS1-specific mAb may be a therapeutic option against dengue disease.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Virus del Dengue/inmunología , Dengue/terapia , Hemorragia/prevención & control , Inmunoterapia/métodos , Proteínas no Estructurales Virales/metabolismo , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Autoantígenos/inmunología , Células Cultivadas , Reacciones Cruzadas , Dengue/complicaciones , Dengue/inmunología , Virus del Dengue/genética , Modelos Animales de Enfermedad , Virus de la Encefalitis Japonesa (Especie)/genética , Epítopos/genética , Hemorragia/etiología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Noqueados , Proteínas Recombinantes/inmunología , Factor de Transcripción STAT1/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología
9.
J Biomed Sci ; 25(1): 58, 2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30037331

RESUMEN

Dengue virus (DENV) infection is the most common mosquito-transmitted viral infection. DENV infection can cause mild dengue fever or severe dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS). Hemorrhage and vascular leakage are two characteristic symptoms of DHF/DSS. However, due to the limited understanding of dengue pathogenesis, no satisfactory therapies to treat nor vaccine to prevent dengue infection are available, and the mortality of DHF/DSS is still high. DENV nonstructural protein 1 (NS1), which can be secreted in patients' sera, has been used as an early diagnostic marker for dengue infection for many years. However, the roles of NS1 in dengue-induced vascular leakage were described only recently. In this article, the pathogenic roles of DENV NS1 in hemorrhage and vascular leakage are reviewed, and the possibility of using NS1 as a therapeutic target and vaccine candidate is discussed.


Asunto(s)
Virus del Dengue/genética , Dengue Grave/prevención & control , Vacunas/uso terapéutico , Proteínas no Estructurales Virales/genética , Anticuerpos Antivirales/uso terapéutico , Virus del Dengue/inmunología , Virus del Dengue/patogenicidad , Humanos , Dengue Grave/inmunología , Dengue Grave/virología , Vacunas/inmunología , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/uso terapéutico
10.
J Immunol ; 196(3): 1218-26, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26712948

RESUMEN

Dengue virus (DENV) infection is the most common mosquito-borne viral disease, and it can cause life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Abnormal activation of the coagulation and fibrinolysis system is one of the hallmarks of DHF/DSS. However, the mechanism underlying hemorrhage in DHF/DSS remains elusive. In previous studies, plasminogen (Plg) cross-reactive Abs, which can recognize DENV nonstructural protein (NS) 1, have been found in dengue patients. However, it is unclear whether these Abs are indeed induced by DENV NS1. Thus, we immunized mice with recombinant NS1 from both bacteria and drosophila to determine whether NS1 can induce Plg cross-reactive Abs. The results from the NS1-immunized mouse sera indicated that NS1 immunization induced Abs that could cross-react with Plg. To study the effects of these NS1-induced Plg cross-reactive Abs on fibrinolysis, we isolated several Plg cross-reactive anti-NS1 mAbs from these mice and found that some of them could enhance Plg activation. In addition, epitope mapping with a phage-displayed random peptide library revealed that one of these mAbs (2A5) could recognize NS1 C-terminal residues 305-311, which share sequence homology with Plg residues 590-597. A synthetic peptide of NS1 residues 305-311 could inhibit the binding of both 2A5 and its Fab to Plg and its enhanced activation. Thus, our results suggest that DENV NS1 can induce Plg cross-reactive Abs through molecular mimicry, which can enhance Plg activation and may contribute to the pathogenesis of DHF/DSS.


Asunto(s)
Anticuerpos Antivirales/inmunología , Fibrinólisis/inmunología , Plasminógeno/inmunología , Proteínas no Estructurales Virales/inmunología , Animales , Antígenos Virales/inmunología , Western Blotting , Reacciones Cruzadas/inmunología , Virus del Dengue/inmunología , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Humanos , Ratones , Ratones Endogámicos BALB C , Imitación Molecular , Dengue Grave/inmunología
11.
J Immunol ; 193(7): 3693-703, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25172501

RESUMEN

IFN-γ mediates chemically induced skin inflammation; however, the mechanism by which IFN-γ-producing cells are recruited to the sites of inflammation remains undefined. Secretion of macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, from damaged cells may promote immune cell recruitment. We hypothesized that MIF triggers an initial step in the chemotaxis of IFN-γ-producing cells in chemically induced skin inflammation. Using acute and chronic models of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mouse ears, MIF expression was examined, and its role in this process was investigated pharmacologically. The cell populations targeted by MIF, their receptor expression patterns, and the effects of MIF on cell migration were examined. TPA directly caused cytotoxicity accompanied by MIF release in mouse ear epidermal keratinocytes, as well as in human keratinocytic HaCaT cells. Treatment with the MIF antagonist (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester considerably attenuated TPA-induced ear swelling, leukocyte infiltration, epidermal cell proliferation, and dermal angiogenesis. Inhibition of MIF greatly diminished the dermal infiltration of IFN-γ(+) NKT cells, whereas the addition of exogenous TPA and MIF to NKT cells promoted their IFN-γ production and migration, respectively. MIF specifically triggered the chemotaxis of NKT cells via CD74 and CXCR2, and the resulting depletion of NKT cells abolished TPA-induced skin inflammation. In TPA-induced skin inflammation, MIF is released from damaged keratinocytes and then triggers the chemotaxis of CD74(+)CXCR2(+) NKT cells for IFN-γ production.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B/inmunología , Carcinógenos/farmacología , Erupciones por Medicamentos/inmunología , Epidermis/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Interferón gamma/inmunología , Oxidorreductasas Intramoleculares/inmunología , Queratinocitos/inmunología , Factores Inhibidores de la Migración de Macrófagos/inmunología , Células T Asesinas Naturales/inmunología , Receptores de Interleucina-8B/inmunología , Acetato de Tetradecanoilforbol/efectos adversos , Enfermedad Aguda , Animales , Antígenos de Diferenciación de Linfocitos B/genética , Línea Celular , Enfermedad Crónica , Modelos Animales de Enfermedad , Erupciones por Medicamentos/etiología , Erupciones por Medicamentos/genética , Erupciones por Medicamentos/patología , Epidermis/patología , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Interferón gamma/genética , Oxidorreductasas Intramoleculares/genética , Queratinocitos/patología , Factores Inhibidores de la Migración de Macrófagos/genética , Ratones , Células T Asesinas Naturales/patología , Neovascularización Patológica/inducido químicamente , Neovascularización Patológica/genética , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Receptores de Interleucina-8B/genética , Acetato de Tetradecanoilforbol/farmacología
12.
J Virol ; 88(23): 13759-68, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25231318

RESUMEN

UNLABELLED: Dengue virus (DENV) is the most common cause of viral hemorrhagic fever, and it may lead to life-threating dengue hemorrhagic fever and shock syndrome (DHF/DSS). Because most cases of DHF/DSS occur in patients with secondary DENV infection, anti-DENV antibodies are generally considered to play a role in the pathogenesis of DHF/DSS. Previously, we have found that antithrombin antibodies (ATAs) with both antithrombotic and profibrinolytic activities are present in the sera of dengue patients. However, the mechanism by which these autoantibodies are induced is unclear. In this study, we demonstrated that antibodies induced by DENV immunization in mice and rabbits could bind to DENV antigens as well as to human thrombin and plasminogen (Plg). The binding of anti-DENV antibodies to thrombin and Plg was inhibited by preadsorption with DENV nonstructural protein 1. In addition, affinity-purified ATAs from DENV-immunized rabbit sera could inhibit thrombin activity and enhance Plg activation both in vitro and in vivo. Taken together, our results suggest that molecular mimicry between DENV and coagulation factors can induce the production of autoantibodies with biological effects similar to those of ATAs found in dengue patients. These coagulation-factor cross-reactive anti-DENV antibodies can interfere with the balance of coagulation and fibrinolysis, which may lead to the tendency of DHF/DSS patients to bleed. IMPORTANCE: Dengue virus (DENV) infection is the most common mosquito-borne viral disease in tropical and subtropical areas. Over 50 million DENV infection cases develop each year, and more than 2.5 billion people are at risk of dengue-induced hemorrhagic fever and shock syndrome. Currently, there is no vaccine or drug treatment for DENV. In the present study, we demonstrated that DENV immunization could induce thrombin and plasminogen (Plg) cross-reactive antibodies, which were able to inhibit thrombin activity and enhance Plg activation. These results suggest that molecular mimicry between DENV antigens, thrombin, and Plg may elicit antibodies that disturb hemostasis. The selection of appropriate candidate antigens for use in DENV vaccines should prevent these potentially dangerous autoimmune responses.


Asunto(s)
Anticuerpos Antivirales/sangre , Virus del Dengue/inmunología , Imitación Molecular , Plasminógeno/inmunología , Plasminógeno/metabolismo , Trombina/antagonistas & inhibidores , Trombina/inmunología , Animales , Anticuerpos Antivirales/metabolismo , Antígenos Virales/inmunología , Autoanticuerpos/sangre , Autoanticuerpos/metabolismo , Reacciones Cruzadas , Ratones Endogámicos BALB C , Unión Proteica , Conejos
13.
J Immunol ; 191(4): 1744-52, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23851680

RESUMEN

Immunopathogenetic mechanisms of dengue virus (DENV) infection are involved in hemorrhagic syndrome resulting from thrombocytopenia, coagulopathy, and vasculopathy. We have proposed a mechanism of molecular mimicry in which Abs against DENV nonstructural protein 1 (NS1) cross-react with human endothelial cells and cause NF-κB-regulated immune activation and NO-mediated apoptosis. However, the signaling pathway leading to NF-κB activation after the binding of anti-DENV NS1 Abs to endothelial cells is unresolved. In this study, we found that anti-DENV NS1 Abs caused the formation of lipid raftlike structures, and that disrupting lipid raft formation by methyl-ß-cyclodextrin decreased NO production and apoptosis. Treatment with anti-DENV NS1 Abs elevated ceramide generation in lipid rafts. Pharmacological inhibition of acid sphingomyelinase (aSMase) decreased anti-DENV NS1 Ab-mediated ceramide and NO production, as well as apoptosis. Exogenous ceramide treatment induced biogenesis of inducible NO synthase (iNOS)/NO and apoptosis through an NF-κB-regulated manner. Furthermore, activation of glycogen synthase kinase-3ß (GSK-3ß) was required for ceramide-induced NF-κB activation and iNOS expression. Notably, anti-DENV NS1 Abs caused GSK-3ß-mediated NF-κB activation and iNOS expression, which were regulated by aSMase. Moreover, pharmacological inhibition of GSK-3ß reduced hepatic endothelial cell apoptosis in mice passively administered anti-DENV NS1 Abs. These results suggest that anti-DENV NS1 Abs bind to the endothelial cell membrane and cause NO production and apoptosis via a mechanism involving the aSMase/ceramide/GSK-3ß/NF-κB/iNOS/NO signaling pathway.


Asunto(s)
Anticuerpos Antivirales/fisiología , Apoptosis/fisiología , Ceramidas/fisiología , Virus del Dengue/inmunología , Células Endoteliales/inmunología , Glucógeno Sintasa Quinasa 3/fisiología , FN-kappa B/fisiología , Óxido Nítrico/fisiología , Proteínas no Estructurales Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Línea Celular , Ceramidas/biosíntesis , Reacciones Cruzadas , Células Endoteliales/patología , Activación Enzimática/inmunología , Regulación de la Expresión Génica/inmunología , Glucógeno Sintasa Quinasa 3 beta , Humanos , Inmunoglobulina G/inmunología , Masculino , Microdominios de Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Óxido Nítrico Sintasa de Tipo II/fisiología , Proteínas Recombinantes de Fusión/inmunología , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/fisiología , beta-Ciclodextrinas/farmacología
14.
Mediators Inflamm ; 2015: 547094, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25821355

RESUMEN

Dengue virus (DENV) infection is the most common cause of viral hemorrhagic fever, which can lead to life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Hemorrhage and plasma leakage are two major hallmarks of DHF/DSS. Because the mechanisms causing these pathogenic changes are unclear, there is no effective therapy against DHF/DSS. In this review, we focus on the possible pathogenic effects of a pleiotropic cytokine, macrophage migration inhibitory factor (MIF), on the pathogenesis of DENV infection. MIF is a critical mediator of the host immune response and inflammation, and there is a correlation between the serum levels of MIF and disease severity in dengue patients. Furthermore, MIF knock-out mice exhibit less severe clinical disease and lethality. However, the role of MIF in the pathogenesis of DHF/DSS is not limited to immune cell recruitment. Recent evidence indicates that DENV infection induced MIF production and may contribute to vascular hyperpermeability and viral replication during DENV infection. The expression of both adhesion and coagulation molecules on MIF-stimulated monocytes and endothelial cells is also increased, which may contribute to inflammatory and anticoagulatory states during DHF/DSS. Therefore, blocking MIF production or its function may provide a solution for the treatment and prevention of DHF/DSS.


Asunto(s)
Dengue/etiología , Oxidorreductasas Intramoleculares/fisiología , Factores Inhibidores de la Migración de Macrófagos/fisiología , Animales , Permeabilidad Capilar , Dengue/inmunología , Virus del Dengue/fisiología , Humanos , Inflamación/etiología , Molécula 1 de Adhesión Intercelular/análisis , Oxidorreductasas Intramoleculares/química , Factores Inhibidores de la Migración de Macrófagos/química , Ratones , Replicación Viral
15.
J Virol ; 87(15): 8502-10, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23720717

RESUMEN

Herpes simplex virus 1 (HSV-1) replication initiates inflammation and angiogenesis responses in the cornea to result in herpetic stromal keratitis (HSK), which is a leading cause of infection-induced vision impairment. Chemokines are secreted to modulate HSK by recruiting leukocytes, which affect virus growth, and by influencing angiogenesis. The present study used a murine infection model to investigate the significance of the chemokine CXC chemokine ligand 10 (CXCL10; gamma interferon-inducible protein 10 [IP-10]) in HSK. Here, we show that HSV-1 infection of the cornea induced CXCL10 protein expression in epithelial cells. The corneas of mice with a targeted disruption of the gene encoding CXCL10 displayed decreases in levels of neutrophil-attracting cytokine (interleukin-6), primary neutrophil influx, and viral clearance 2 or 3 days postinfection. Subsequently, absence of CXCL10 aggravated HSK with elevated levels of interleukin-6, chemokines for CD4(+) T cells and/or neutrophils (macrophage inflammatory protein-1α and macrophage inflammatory protein-2), angiogenic factor (vascular endothelial growth factor A), and secondary neutrophil influx, as well as infiltration of CD4(+) T cells to exacerbate opacity and angiogenesis in the cornea at 14 and up to 28 days postinfection. Our results collectively show that endogenous CXCL10 contributes to recruit the primary neutrophil influx and to affect the expression of cytokines, chemokines, and angiogenic factors as well as to reduce the viral titer and HSK severity.


Asunto(s)
Quimiocina CXCL10/deficiencia , Quimiocina CXCL10/inmunología , Herpesvirus Humano 1/inmunología , Queratitis Herpética/inmunología , Queratitis Herpética/patología , Neutrófilos/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Quimiocinas/metabolismo , Córnea/patología , Córnea/virología , Modelos Animales de Enfermedad , Femenino , Herpesvirus Humano 1/patogenicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo
16.
J Biomed Sci ; 20: 42, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23806052

RESUMEN

Dengue virus (DENV) infection can cause life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular leakage and abnormal hemorrhage are the two major pathogenic changes found in these patients. From previous studies, it is known that both antibodies and cytokines induced in response to DENV infection are involved in the immunopathogenesis of DHF/DSS. However, the role of viral factors during DENV infection remains unclear. Nonstructural protein 1 (NS1), which is secreted in the sera of patients, is a useful diagnostic marker for acute DENV infection. Nevertheless, the roles of NS1 and its antibodies in the pathogenesis of DHF/DSS are unclear. The focus of this review is to evaluate the possible contributions of NS1 and the antibodies it induces to vascular leakage and abnormal hemorrhage during DENV infection, which may provide clues to better understanding the pathogenesis of DHF/DSS.


Asunto(s)
Anticuerpos Antivirales/inmunología , Virus del Dengue/patogenicidad , Dengue/virología , Proteínas no Estructurales Virales/metabolismo , Anticuerpos Antivirales/sangre , Dengue/inmunología , Dengue/metabolismo , Virus del Dengue/inmunología , Virus del Dengue/metabolismo , Humanos , Dengue Grave/inmunología , Dengue Grave/metabolismo , Dengue Grave/virología
17.
J Biomed Sci ; 20: 65, 2013 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-24011333

RESUMEN

BACKGROUND: We and others have reported that autophagy is induced by dengue viruses (DVs) in various cell lines, and that it plays a supportive role in DV replication. This study intended to clarify whether DV infection could induce autophagy in vivo. Furthermore, the effect of DV induced autophagy on viral replication and DV-related pathogenesis was investigated. RESULTS AND CONCLUSIONS: The physiopathological parameters were evaluated after DV2 was intracranially injected into 6-day-old ICR suckling mice. Autophagy-related markers were monitored by immunohistochemical/immunofluorescent staining and Western blotting. Double-membrane autophagic vesicles were investigated by transmission-electron-microscopy. DV non-structural-protein-1 (NS1) expression (indicating DV infection) was detected in the cerebrum, medulla and midbrain of the infected mice. In these infected tissues, increased LC3 puncta formation, LC3-II expression, double-membrane autophagosome-like vesicles (autophagosome), amphisome, and decreased p62 accumulation were observed, indicating that DV2 induces the autophagic progression in vivo. Amphisome formation was demonstrated by colocalization of DV2-NS1 protein or LC3 puncta and mannose-6-phosphate receptor (MPR, endosome marker) in DV2-infected brain tissues. We further manipulated DV-induced autophagy by the inducer rapamycin and the inhibitor 3-methyladenine (3MA), which accordingly promoted or suppressed the disease symptoms and virus load in the brain of the infected mice.We demonstrated that DV2 infection of the suckling mice induces autophagy, which plays a promoting role in DV replication and pathogenesis.


Asunto(s)
Autofagia , Virus del Dengue/fisiología , Dengue/fisiopatología , Dengue/virología , Carga Viral , Adenina/análogos & derivados , Adenina/farmacología , Animales , Animales Recién Nacidos , Antimetabolitos/farmacología , Western Blotting , Técnica del Anticuerpo Fluorescente , Inmunoquímica , Inmunosupresores/farmacología , Ratones , Ratones Endogámicos ICR , Microscopía Electrónica de Transmisión , Sirolimus/farmacología , Replicación Viral
18.
J Biomed Sci ; 20: 37, 2013 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-23758699

RESUMEN

Dengue is one of the most important emerging vector-borne viral diseases. There are four serotypes of dengue viruses (DENV), each of which is capable of causing self-limited dengue fever (DF) or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The major clinical manifestations of severe DENV disease are vascular leakage, thrombocytopenia, and hemorrhage, yet the detailed mechanisms are not fully resolved. Besides the direct effects of the virus, immunopathological aspects are also involved in the development of dengue symptoms. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, and live recombinant, DNA and subunit vaccines. The live attenuated virus vaccines and live chimeric virus vaccines are undergoing clinical evaluation. The other vaccine candidates have been evaluated in preclinical animal models or are being prepared for clinical trials. For the safety and efficacy of dengue vaccines, the immunopathogenic complications such as antibody-mediated enhancement and autoimmunity of dengue disease need to be considered.


Asunto(s)
Vacunas contra el Dengue/inmunología , Dengue/prevención & control , Animales , Dengue/inmunología , Dengue/virología , Vacunas contra el Dengue/genética , Virus del Dengue/genética , Virus del Dengue/inmunología , Humanos , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
19.
J Immunol ; 187(12): 6483-90, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22079981

RESUMEN

Dengue virus infection can lead to life-threatening dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS) in patients. Abnormal activation of the coagulation and fibrinolysis system is one of the hallmarks associated with DHF/DSS patients. However, the mechanisms that cause pathology in DHF/DSS patients are still unclear. Because conversion of plasminogen (Plg) to plasmin (Plm) is the first step in the activation of fibrinolysis, Abs against Plg found in DHF/DSS patients may be important. Therefore, to investigate the specificity, function, and possible origin of these Abs, we generated several Plg cross-reactive mAbs from DENV-immunized mice. An IgG mAb, 6H11, which recognizes an epitope associated with a dengue envelope protein, demonstrated a high level of cross-reactivity with Plg. The 6H11 Ab was further characterized with regard to its effect on Plg activation. Using Plm-specific chromogenic substrate S-2251, we found that mAb 6H11 demonstrated serine protease activity and could convert Plg directly to Plm. The serine protease activity of mAb 6H11 was further confirmed using serine protease chromogenic substrate S-2288. In addition, we found several Plg cross-reactive mAbs that could enhance urokinase-induced Plg activation. Lastly, mAb 6H11 could induce Plm activity and increase the level of D-dimer (a fibrin degradation product) in both human and mouse platelet-poor plasma. Taken together, these data suggest DENV-induced Plg cross-reactive Abs may enhance Plg conversion to Plm, which would be expected to contribute to hyperfibrinolysis in DHF/DSS patients.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Anticuerpos Antivirales/metabolismo , Autoanticuerpos/metabolismo , Virus del Dengue/inmunología , Plasminógeno/metabolismo , Adulto , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/fisiología , Autoanticuerpos/biosíntesis , Autoanticuerpos/fisiología , Sitios de Unión de Anticuerpos/inmunología , Reacciones Cruzadas/inmunología , Dengue/inmunología , Dengue/virología , Femenino , Fibrinolisina/metabolismo , Fibrinólisis/inmunología , Humanos , Lactante , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Plasminógeno/inmunología , Unión Proteica/inmunología , Dengue Grave/inmunología , Dengue Grave/virología , Regulación hacia Arriba/inmunología
20.
J Formos Med Assoc ; 112(1): 12-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23332424

RESUMEN

Hemorrhage is one of the hallmarks of dengue hemorrhagic fever. However, the mechanisms that cause hemorrhage are unclear. In this review we focus on the possible factors that may be involved in the disturbance of coagulation and fibrinolysis during dengue virus (DENV) infection. Factors such as autoantibodies and cytokines induced by DENV infection as well as hemostatic molecules expressed on DENV-infected cells, and DENV viral proteins may all contribute to the defect of hemostasis during DENV infection. It is the combination of these viral and host factors that may tilt the balance of coagulation and fibrinolysis toward bleeding in dengue patients.


Asunto(s)
Trastornos de la Coagulación Sanguínea/inmunología , Virus del Dengue/inmunología , Fibrinólisis/inmunología , Dengue Grave/complicaciones , Proteínas Virales/inmunología , Autoanticuerpos/sangre , Citocinas/inmunología , Humanos , Imitación Molecular , Protrombina/metabolismo , Dengue Grave/sangre , Trombomodulina/sangre , Activador de Tejido Plasminógeno/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA