Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 185(21): 4008-4022.e14, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36150393

RESUMEN

The continual evolution of SARS-CoV-2 and the emergence of variants that show resistance to vaccines and neutralizing antibodies threaten to prolong the COVID-19 pandemic. Selection and emergence of SARS-CoV-2 variants are driven in part by mutations within the viral spike protein and in particular the ACE2 receptor-binding domain (RBD), a primary target site for neutralizing antibodies. Here, we develop deep mutational learning (DML), a machine-learning-guided protein engineering technology, which is used to investigate a massive sequence space of combinatorial mutations, representing billions of RBD variants, by accurately predicting their impact on ACE2 binding and antibody escape. A highly diverse landscape of possible SARS-CoV-2 variants is identified that could emerge from a multitude of evolutionary trajectories. DML may be used for predictive profiling on current and prospective variants, including highly mutated variants such as Omicron, thus guiding the development of therapeutic antibody treatments and vaccines for COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Humanos , Mutación , Pandemias , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
2.
Proc Natl Acad Sci U S A ; 119(18): e2113766119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35486691

RESUMEN

The capacity of humoral B cell-mediated immunity to effectively respond to and protect against pathogenic infections is largely driven by the presence of a diverse repertoire of polyclonal antibodies in the serum, which are produced by plasma cells (PCs). Recent studies have started to reveal the balance between deterministic mechanisms and stochasticity of antibody repertoires on a genotypic level (i.e., clonal diversity, somatic hypermutation, and germline gene usage). However, it remains unclear if clonal selection and expansion of PCs follow any deterministic rules or are stochastic with regards to phenotypic antibody properties (i.e., antigen-binding, affinity, and epitope specificity). Here, we report on the in-depth genotypic and phenotypic characterization of clonally expanded PC antibody repertoires following protein immunization. We find that clonal expansion drives antigen specificity of the most expanded clones (top ∼10), whereas among the rest of the clonal repertoire antigen specificity is stochastic. Furthermore, we report both on a polyclonal repertoire and clonal lineage level that antibody-antigen binding affinity does not correlate with clonal expansion or somatic hypermutation. Last, we provide evidence for convergence toward targeting dominant epitopes despite clonal sequence diversity among the most expanded clones. Our results highlight the extent to which clonal expansion can be ascribed to antigen binding, affinity, and epitope specificity, and they have implications for the assessment of effective vaccines.


Asunto(s)
Antígenos , Células Plasmáticas , Animales , Anticuerpos/genética , Afinidad de Anticuerpos , Epítopos/genética , Ratones
3.
Bioinformatics ; 39(9)2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37682115

RESUMEN

MOTIVATION: The maturation of systems immunology methodologies requires novel and transparent computational frameworks capable of integrating diverse data modalities in a reproducible manner. RESULTS: Here, we present the ePlatypus computational immunology ecosystem for immunogenomics data analysis, with a focus on adaptive immune repertoires and single-cell sequencing. ePlatypus is an open-source web-based platform and provides programming tutorials and an integrative database that helps elucidate signatures of B and T cell clonal selection. Furthermore, the ecosystem links novel and established bioinformatics pipelines relevant for single-cell immune repertoires and other aspects of computational immunology such as predicting ligand-receptor interactions, structural modeling, simulations, machine learning, graph theory, pseudotime, spatial transcriptomics, and phylogenetics. The ePlatypus ecosystem helps extract deeper insight in computational immunology and immunogenomics and promote open science. AVAILABILITY AND IMPLEMENTATION: Platypus code used in this manuscript can be found at github.com/alexyermanos/Platypus.


Asunto(s)
Ecosistema , Ornitorrinco , Animales , Biología Computacional/métodos , Filogenia , Aprendizaje Automático , Programas Informáticos
4.
Eur J Immunol ; 52(2): 297-311, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727578

RESUMEN

Plasma cells and their secreted antibodies play a central role in the long-term protection against chronic viral infection. However, due to experimental limitations, a comprehensive description of linked genotypic, phenotypic, and antibody repertoire features of plasma cells (gene expression, clonal frequency, virus specificity, and affinity) has been challenging to obtain. To address this, we performed single-cell transcriptome and antibody repertoire sequencing of the murine BM plasma cell population following chronic lymphocytic choriomeningitis virus infection. Our single-cell sequencing approach recovered full-length and paired heavy- and light-chain sequence information for thousands of plasma cells and enabled us to perform recombinant antibody expression and specificity screening. Antibody repertoire analysis revealed that, relative to protein immunization, chronic infection led to increased levels of clonal expansion, class-switching, and somatic variants. Furthermore, antibodies from the highly expanded and class-switched (IgG) plasma cells were found to be specific for multiple viral antigens and a subset of clones exhibited cross-reactivity to nonviral and autoantigens. Integrating single-cell transcriptome data with antibody specificity suggested that plasma cell transcriptional phenotype was correlated to viral antigen specificity. Our findings demonstrate that chronic viral infection can induce and sustain plasma cell clonal expansion, combined with significant somatic hypermutation, and can generate cross-reactive antibodies.


Asunto(s)
Anticuerpos Antivirales , Selección Clonal Mediada por Antígenos , Cadenas Pesadas de Inmunoglobulina , Cadenas Ligeras de Inmunoglobulina , Coriomeningitis Linfocítica , Virus de la Coriomeningitis Linfocítica/inmunología , Células Plasmáticas/inmunología , Análisis de la Célula Individual , Animales , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Enfermedad Crónica , Femenino , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/inmunología , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/inmunología , Ratones
5.
Acta Neuropathol ; 145(3): 335-355, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36695896

RESUMEN

B cells contribute to the pathogenesis of both cellular- and humoral-mediated central nervous system (CNS) inflammatory diseases through a variety of mechanisms. In such conditions, B cells may enter the CNS parenchyma and contribute to local tissue destruction. It remains unexplored, however, how infection and autoimmunity drive transcriptional phenotypes, repertoire features, and antibody functionality. Here, we profiled B cells from the CNS of murine models of intracranial (i.c.) viral infections and autoimmunity. We identified a population of clonally expanded, antibody-secreting cells (ASCs) that had undergone class-switch recombination and extensive somatic hypermutation following i.c. infection with attenuated lymphocytic choriomeningitis virus (rLCMV). Recombinant expression and characterisation of these antibodies revealed specificity to viral antigens (LCMV glycoprotein GP), correlating with ASC persistence in the brain weeks after resolved infection. Furthermore, these virus-specific ASCs upregulated proliferation and expansion programs in response to the conditional and transient induction of the LCMV GP as a neo-self antigen by astrocytes. This class-switched, clonally expanded, and mutated population persisted and was even more pronounced when peripheral B cells were depleted prior to autoantigen induction in the CNS. In contrast, the most expanded B cell clones in mice with persistent expression of LCMV GP in the CNS did not exhibit neo-self antigen specificity, potentially a consequence of local tolerance induction. Finally, a comparable population of clonally expanded, class-switched, and proliferating ASCs was detected in the cerebrospinal fluid of relapsing multiple sclerosis (RMS) patients. Taken together, our findings support the existence of B cells that populate the CNS and are capable of responding to locally encountered autoantigens.


Asunto(s)
Células Productoras de Anticuerpos , Autoantígenos , Ratones , Animales , Linfocitos B , Virus de la Coriomeningitis Linfocítica , Encéfalo
6.
Genes Immun ; 23(6): 183-195, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36028771

RESUMEN

Adaptive immune repertoires are composed by the ensemble of B and T-cell receptors within an individual, reflecting both past and current immune responses. Recent advances in single-cell sequencing enable recovery of the complete adaptive immune receptor sequences in addition to transcriptional information. Here, we recovered transcriptome and immune repertoire information for polyclonal T follicular helper cells following lymphocytic choriomeningitis virus (LCMV) infection, CD8+ T cells with binding specificity restricted to two distinct LCMV peptides, and B and T cells isolated from the nervous system in the context of experimental autoimmune encephalomyelitis. We could relate clonal expansion, germline gene usage, and clonal convergence to cell phenotypes spanning activation, memory, naive, antibody secretion, T-cell inflation, and regulation. Together, this dataset provides a resource for immunologists that can be integrated with future single-cell immune repertoire and transcriptome sequencing datasets.


Asunto(s)
Autoinmunidad , Coriomeningitis Linfocítica , Animales , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Coriomeningitis Linfocítica/genética , Ratones , Ratones Endogámicos C57BL , Péptidos , Receptores de Antígenos de Linfocitos T/genética
7.
BMC Genomics ; 23(1): 289, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410128

RESUMEN

BACKGROUND: The continued spread of SARS-CoV-2 and emergence of new variants with higher transmission rates and/or partial resistance to vaccines has further highlighted the need for large-scale testing and genomic surveillance. However, current diagnostic testing (e.g., PCR) and genomic surveillance methods (e.g., whole genome sequencing) are performed separately, thus limiting the detection and tracing of SARS-CoV-2 and emerging variants. RESULTS: Here, we developed DeepSARS, a high-throughput platform for simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2 by the integration of molecular barcoding, targeted deep sequencing, and computational phylogenetics. DeepSARS enables highly sensitive viral detection, while also capturing genomic diversity and viral evolution. We show that DeepSARS can be rapidly adapted for identification of emerging variants, such as alpha, beta, gamma, and delta strains, and profile mutational changes at the population level. CONCLUSIONS: DeepSARS sets the foundation for quantitative diagnostics that capture viral evolution and diversity. DeepSARS uses molecular barcodes (BCs) and multiplexed targeted deep sequencing (NGS) to enable simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2. Image was created using Biorender.com .


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genómica , Humanos , Mutación , SARS-CoV-2/genética , Secuenciación Completa del Genoma
8.
Proc Biol Sci ; 288(1945): 20202793, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33622131

RESUMEN

Neuroinflammation plays a crucial role during ageing and various neurological conditions, including Alzheimer's disease, multiple sclerosis and infection. Technical limitations, however, have prevented an integrative analysis of how lymphocyte immune receptor repertoires and their accompanying transcriptional states change with age in the central nervous system. Here, we leveraged single-cell sequencing to simultaneously profile B cell receptor and T cell receptor repertoires and accompanying gene expression profiles in young and old mouse brains. We observed the presence of clonally expanded B and T cells in the central nervous system of aged male mice. Furthermore, many of these B cells were of the IgM and IgD isotypes, and had low levels of somatic hypermutation. Integrating gene expression information additionally revealed distinct transcriptional profiles of these clonally expanded lymphocytes. Our findings implicate that clonally related T and B cells in the CNS of elderly mice may contribute to neuroinflammation accompanying homeostatic ageing.


Asunto(s)
Sistema Nervioso Central , Transcriptoma , Animales , Linfocitos B , Linfocitos , Masculino , Ratones
9.
Bioinformatics ; 36(11): 3594-3596, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32154832

RESUMEN

SUMMARY: B- and T-cell receptor repertoires of the adaptive immune system have become a key target for diagnostics and therapeutics research. Consequently, there is a rapidly growing number of bioinformatics tools for immune repertoire analysis. Benchmarking of such tools is crucial for ensuring reproducible and generalizable computational analyses. Currently, however, it remains challenging to create standardized ground truth immune receptor repertoires for immunoinformatics tool benchmarking. Therefore, we developed immuneSIM, an R package that allows the simulation of native-like and aberrant synthetic full-length variable region immune receptor sequences by tuning the following immune receptor features: (i) species and chain type (BCR, TCR, single and paired), (ii) germline gene usage, (iii) occurrence of insertions and deletions, (iv) clonal abundance, (v) somatic hypermutation and (vi) sequence motifs. Each simulated sequence is annotated by the complete set of simulation events that contributed to its in silico generation. immuneSIM permits the benchmarking of key computational tools for immune receptor analysis, such as germline gene annotation, diversity and overlap estimation, sequence similarity, network architecture, clustering analysis and machine learning methods for motif detection. AVAILABILITY AND IMPLEMENTATION: The package is available via https://github.com/GreiffLab/immuneSIM and on CRAN at https://cran.r-project.org/web/packages/immuneSIM. The documentation is hosted at https://immuneSIM.readthedocs.io. CONTACT: sai.reddy@ethz.ch or victor.greiff@medisin.uio.no. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Benchmarking , Programas Informáticos , Simulación por Computador , Receptores de Antígenos de Linfocitos T/genética
10.
Immunogenetics ; 72(5): 279-294, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32367185

RESUMEN

Protection and neutralization of a vast array of pathogens is accomplished by the tremendous diversity of the B cell receptor (BCR) repertoire. For jawed vertebrates, this diversity is initiated via the somatic recombination of immunoglobulin (Ig) germline elements. While it is clear that the number of these germline segments differs from species to species, the extent of cross-species sequence diversity remains largely uncharacterized. Here we use extensive computational and statistical methods to investigate the sequence diversity and evolutionary relationship between Ig variable (V), diversity (D), and joining (J) germline segments across nine commonly studied species ranging from zebrafish to human. Metrics such as guanine-cytosine (GC) content showed low redundancy across Ig germline genes within a given species. Other comparisons, including amino acid motifs, evolutionary selection, and sequence diversity, revealed species-specific properties. Additionally, we showed that the germline-encoded diversity differs across antibody (recombined V-D-J) repertoires of various B cell subsets. To facilitate future comparative immunogenomics analysis, we created VDJgermlines, an R package that contains the germline sequences from multiple species. Our study informs strategies for the humanization and engineering of therapeutic antibodies.


Asunto(s)
Variación Genética , Región Variable de Inmunoglobulina/genética , Filogenia , Secuencias de Aminoácidos , Animales , Diversidad de Anticuerpos/genética , Subgrupos de Linfocitos B/metabolismo , Linfocitos B/metabolismo , Composición de Base , Humanos , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/metabolismo , Región Variable de Inmunoglobulina/química , Selección Genética , Especificidad de la Especie , Recombinación V(D)J/genética , Vertebrados
11.
Bioinformatics ; 33(24): 3938-3946, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28968873

RESUMEN

MOTIVATION: The evolution of antibody repertoires represents a hallmark feature of adaptive B-cell immunity. Recent advancements in high-throughput sequencing have dramatically increased the resolution to which we can measure the molecular diversity of antibody repertoires, thereby offering for the first time the possibility to capture the antigen-driven evolution of B cells. However, there does not exist a repertoire simulation framework yet that enables the comparison of commonly utilized phylogenetic methods with regard to their accuracy in inferring antibody evolution. RESULTS: Here, we developed AbSim, a time-resolved antibody repertoire simulation framework, which we exploited for testing the accuracy of methods for the phylogenetic reconstruction of B-cell lineages and antibody molecular evolution. AbSim enables the (i) simulation of intermediate stages of antibody sequence evolution and (ii) the modeling of immunologically relevant parameters such as duration of repertoire evolution, and the method and frequency of mutations. First, we validated that our repertoire simulation framework recreates replicates topological similarities observed in experimental sequencing data. Second, we leveraged Absim to show that current methods fail to a certain extent to predict the true phylogenetic tree correctly. Finally, we formulated simulation-validated guidelines for antibody evolution, which in the future will enable the development of accurate phylogenetic methods. AVAILABILITY AND IMPLEMENTATION: https://cran.r-project.org/web/packages/AbSim/index.html. CONTACT: sai.reddy@ethz.ch. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Linfocitos B/inmunología , Genes de Inmunoglobulinas , Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Animales , Anticuerpos/genética , Linaje de la Célula , Simulación por Computador , Evolución Molecular , Femenino , Ratones , Filogenia
12.
Cell Rep ; 42(5): 112468, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37178119

RESUMEN

The strength of T cell receptor (TCR) stimulation and asymmetric distribution of fate determinants are both implied to affect T cell differentiation. Here, we uncover asymmetric cell division (ACD) as a safeguard mechanism for memory CD8 T cell generation specifically upon strong TCR stimulation. Using live imaging approaches, we find that strong TCR stimulation induces elevated ACD rates, and subsequent single-cell-derived colonies comprise both effector and memory precursor cells. The abundance of memory precursor cells emerging from a single activated T cell positively correlates with first mitosis ACD. Accordingly, preventing ACD by inhibition of protein kinase Cζ (PKCζ) during the first mitosis upon strong TCR stimulation markedly curtails the formation of memory precursor cells. Conversely, no effect of ACD on fate commitment is observed upon weak TCR stimulation. Our data provide relevant mechanistic insights into the role of ACD for CD8 T cell fate regulation upon different activation conditions.


Asunto(s)
División Celular Asimétrica , Transducción de Señal , Memoria Inmunológica , Diferenciación Celular , Linfocitos T CD8-positivos/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo
13.
iScience ; 26(3): 106055, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36852274

RESUMEN

Although new genomics-based pipelines have potential to augment antibody discovery, these methods remain in their infancy due to an incomplete understanding of the selection process that governs B cell clonal selection, expansion, and antigen specificity. Furthermore, it remains unknown how factors such as aging and reduction of tolerance influence B cell selection. Here we perform single-cell sequencing of antibody repertoires and transcriptomes of murine B cells following immunizations with a model therapeutic antigen target. We determine the relationship between antibody repertoires, gene expression signatures, and antigen specificity across 100,000 B cells. Recombinant expression and characterization of 227 monoclonal antibodies revealed the existence of clonally expanded and class-switched antigen-specific B cells that were more frequent in young mice. Although integrating multiple repertoire features such as germline gene usage and transcriptional signatures failed to distinguish antigen-specific from nonspecific B cells, other features such as immunoglobulin G (IgG) subtype and sequence composition correlated with antigen specificity.

14.
Cell Rep Methods ; 2(1): 100154, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35474867

RESUMEN

Existing approaches to therapeutic gene transfer are marred by the transient nature of gene expression following non-integrative gene delivery and by safety concerns due to the random mechanism of viral-mediated genomic insertions. The disadvantages of these methods encourage future research in identifying human genomic sites that allow for durable and safe expression of genes of interest. We conducted a bioinformatic search followed by the experimental characterization of human genomic sites, identifying two that demonstrated the stable expression of integrated reporter and therapeutic genes without malignant changes to the cellular transcriptome. The cell-type agnostic criteria used in our bioinformatic search suggest widescale applicability of identified sites for engineering of a diverse range of tissues for clinical and research purposes, including modified T cells for cancer therapy and engineered skin to ameliorate inherited diseases and aging. In addition, the stable and robust levels of gene expression from identified sites allow for the industry-scale biomanufacturing of proteins in human cells.


Asunto(s)
Genoma Humano , Proteínas , Humanos , Genoma Humano/genética , Técnicas de Transferencia de Gen , Transgenes , Genómica
15.
Front Immunol ; 13: 782441, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185882

RESUMEN

CD8+ T cells play a crucial role in the control and resolution of viral infections and can adopt a wide range of phenotypes and effector functions depending on the inflammatory context and the duration and extent of antigen exposure. Similarly, viral infections can exert diverse selective pressures on populations of clonally related T cells. Technical limitations have nevertheless made it challenging to investigate the relationship between clonal selection and transcriptional phenotypes of virus-specific T cells. We therefore performed single-cell T cell receptor (TCR) repertoire and transcriptome sequencing of virus-specific CD8 T cells in murine models of acute, chronic and latent infection. We observed clear infection-specific populations corresponding to memory, effector, exhausted, and inflationary phenotypes. We further uncovered a mouse-specific and polyclonal T cell response, despite all T cells sharing specificity to a single viral epitope, which was accompanied by stereotypic TCR germline gene usage in all three infection types. Persistent antigen exposure during chronic and latent viral infections resulted in a higher proportion of clonally expanded T cells relative to acute infection. We furthermore observed a relationship between transcriptional heterogeneity and clonal expansion for all three infections, with highly expanded clones having distinct transcriptional phenotypes relative to less expanded clones. Together our work relates clonal selection to gene expression in the context of viral infection and further provides a dataset and accompanying software for the immunological community.


Asunto(s)
Infecciones por Arenaviridae/inmunología , Linfocitos T CD8-positivos/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Receptores de Antígenos de Linfocitos T/genética , Transcriptoma , Enfermedad Aguda , Animales , Infecciones por Arenaviridae/genética , Infecciones por Arenaviridae/metabolismo , Infecciones por Arenaviridae/virología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Enfermedad Crónica , Células Clonales/metabolismo , Modelos Animales de Enfermedad , Femenino , Infección Latente , Virus de la Coriomeningitis Linfocítica/patogenicidad , Ratones , Ratones Endogámicos C57BL , Fenotipo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Virosis
16.
Sci Transl Med ; 14(640): eabl6157, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35417189

RESUMEN

The mechanisms underlying the chronicity of autoimmune diseases of the central nervous system (CNS) are largely unknown. In particular, it is unclear whether tissue-resident memory T cells (TRM) contribute to lesion pathogenesis during chronic CNS autoimmunity. Here, we observed that a high frequency of brain-infiltrating CD8+ T cells exhibit a TRM-like phenotype in human autoimmune encephalitis. Using mouse models of neuronal autoimmunity and a combination of T single-cell transcriptomics, high-dimensional flow cytometry, and histopathology, we found that pathogenic CD8+ T cells behind the blood-brain barrier adopt a characteristic TRM differentiation program, and we revealed their phenotypic and functional heterogeneity. In the diseased CNS, autoreactive tissue-resident CD8+ T cells sustained focal neuroinflammation and progressive loss of neurons, independently of recirculating CD8+ T cells. Consistently, a large fraction of autoreactive tissue-resident CD8+ T cells exhibited proliferative potential as well as proinflammatory and cytotoxic properties. Persistence of tissue-resident CD8+ T cells in the CNS and their functional output, but not their initial differentiation, were crucially dependent on CD4+ T cells. Collectively, our results point to tissue-resident CD8+ T cells as essential drivers of chronic CNS autoimmunity and suggest that therapies targeting this compartmentalized autoreactive T cell subset might be effective for treating CNS autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Linfocitos T CD8-positivos , Animales , Enfermedades Autoinmunes/patología , Sistema Nervioso Central , Memoria Inmunológica , Ratones , Neuronas
17.
Bioinform Adv ; 2(1): vbac062, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699357

RESUMEN

Motivation: Single-cell sequencing now enables the recovery of full-length immune receptor repertoires [B cell receptor (BCR) and T cell receptor (TCR) repertoires], in addition to gene expression information. The feature-rich datasets produced from such experiments require extensive and diverse computational analyses, each of which can significantly influence the downstream immunological interpretations, such as clonal selection and expansion. Simulations produce validated standard datasets, where the underlying generative model can be precisely defined and furthermore perturbed to investigate specific questions of interest. Currently, there is no tool that can be used to simulate single-cell datasets incorporating immune receptor repertoires and gene expression. Results: We developed Echidna, an R package that simulates immune receptors and transcriptomes at single-cell resolution with user-tunable parameters controlling a wide range of features such as clonal expansion, germline gene usage, somatic hypermutation, transcriptional phenotypes and spatial location. Echidna can additionally simulate time-resolved B cell evolution, producing mutational networks with complex selection histories incorporating class-switching and B cell subtype information. We demonstrated the benchmarking potential of Echidna by simulating clonal lineages and comparing the known simulated networks with those inferred from only the BCR sequences as input. Finally, we simulated immune repertoire information onto existing spatial transcriptomic experiments, thereby generating novel datasets that could be used to develop and integrate methods to profile clonal selection in a spatially resolved manner. Together, Echidna provides a framework that can incorporate experimental data to simulate single-cell immune repertoires to aid software development and bioinformatic benchmarking of clonotyping, phylogenetics, transcriptomics and machine learning strategies. Availability and implementation: The R package and code used in this manuscript can be found at github.com/alexyermanos/echidna and also in the R package Platypus (Yermanos et al., 2021). Installation instructions and the vignette for Echidna is described in the Platypus Computational Ecosystem (https://alexyermanos.github.io/Platypus/index.html). Publicly available data and corresponding sample accession numbers can be found in Supplementary Tables S2 and S3. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

18.
Cell Rep ; 38(3): 110242, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34998467

RESUMEN

Characterization of COVID-19 antibodies has largely focused on memory B cells; however, it is the antibody-secreting plasma cells that are directly responsible for the production of serum antibodies, which play a critical role in resolving SARS-CoV-2 infection. Little is known about the specificity of plasma cells, largely because plasma cells lack surface antibody expression, thereby complicating their screening. Here, we describe a technology pipeline that integrates single-cell antibody repertoire sequencing and mammalian display to interrogate the specificity of plasma cells from 16 convalescent patients. Single-cell sequencing allows us to profile antibody repertoire features and identify expanded clonal lineages. Mammalian display screening is used to reveal that 43 antibodies (of 132 candidates) derived from expanded plasma cell lineages are specific to SARS-CoV-2 antigens, including antibodies with high affinity to the SARS-CoV-2 receptor-binding domain (RBD) that exhibit potent neutralization and broad binding to the RBD of SARS-CoV-2 variants (of concern/interest).


Asunto(s)
Anticuerpos Neutralizantes/aislamiento & purificación , Células Plasmáticas/metabolismo , SARS-CoV-2/inmunología , Análisis de la Célula Individual/métodos , Animales , Anticuerpos Antivirales/aislamiento & purificación , COVID-19/inmunología , COVID-19/prevención & control , Células Cultivadas , Estudios de Cohortes , Biblioteca de Genes , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mamíferos , Pruebas de Neutralización , Biblioteca de Péptidos , Células Plasmáticas/química
19.
Sci Transl Med ; 14(640): eabl6058, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35417190

RESUMEN

In chronic inflammatory diseases of the central nervous system (CNS), immune cells persisting behind the blood-brain barrier are supposed to promulgate local tissue destruction. The drivers of such compartmentalized inflammation remain unclear, but tissue-resident memory T cells (TRM) represent a potentially important cellular player in this process. Here, we investigated whether resting CD8+ TRM persisting after cleared infection with attenuated lymphocytic choriomeningitis virus (LCMV) can initiate immune responses directed against cognate self-antigen in the CNS. We demonstrated that time-delayed conditional expression of the LCMV glycoprotein as neo-self-antigen by glia cells reactivated CD8+ TRM. Subsequently, CD8+ TRM expanded and initiated CNS inflammation and immunopathology in an organ-autonomous manner independently of circulating CD8+ T cells. However, in the absence of CD4+ T cells, TCF-1+ CD8+ TRM failed to expand and differentiate into terminal effectors. Similarly, in human demyelinating CNS autoimmune lesions, we found CD8+ T cells expressing TCF-1 that predominantly exhibited a TRM-like phenotype. Together, our study provides evidence for CD8+ TRM-driven CNS immunopathology and sheds light on why inflammatory processes may evade current immunomodulatory treatments in chronic autoimmune CNS conditions.


Asunto(s)
Linfocitos T CD8-positivos , Memoria Inmunológica , Autoantígenos , Linfocitos T CD4-Positivos , Sistema Nervioso Central , Humanos , Inflamación , Virus de la Coriomeningitis Linfocítica
20.
Annu Rev Chem Biomol Eng ; 12: 39-62, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33852352

RESUMEN

Adaptive immunity is mediated by lymphocyte B and T cells, which respectively express a vast and diverse repertoire of B cell and T cell receptors and, in conjunction with peptide antigen presentation through major histocompatibility complexes (MHCs), can recognize and respond to pathogens and diseased cells. In recent years, advances in deep sequencing have led to a massive increase in the amount of adaptive immune receptor repertoire data; additionally, proteomics techniques have led to a wealth of data on peptide-MHC presentation. These large-scale data sets are now making it possible to train machine and deep learning models, which can be used to identify complex and high-dimensional patterns in immune repertoires. This article introduces adaptive immune repertoires and machine and deep learning related to biological sequence data and then summarizes the many applications in this field, which span from predicting the immunological status of a host to the antigen specificity of individual receptors and the engineering of immunotherapeutics.


Asunto(s)
Aprendizaje Profundo , Inmunidad Adaptativa , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA