RESUMEN
PARN loss-of-function mutations cause a severe form of the hereditary disease dyskeratosis congenita (DC). PARN deficiency affects the stability of non-coding RNAs such as human telomerase RNA (hTR), but these effects do not explain the severe disease in patients. We demonstrate that PARN deficiency affects the levels of numerous miRNAs in human cells. PARN regulates miRNA levels by stabilizing either mature or precursor miRNAs by removing oligo(A) tails added by the poly(A) polymerase PAPD5, which if remaining recruit the exonuclease DIS3L or DIS3L2 to degrade the miRNA. PARN knockdown destabilizes multiple miRNAs that repress p53 translation, which leads to an increase in p53 accumulation in a Dicer-dependent manner, thus explaining why PARN-defective patients show p53 accumulation. This work also reveals that DIS3L and DIS3L2 are critical 3' to 5' exonucleases that regulate miRNA stability, with the addition and removal of 3' end extensions controlling miRNA levels in the cell.
Asunto(s)
Exorribonucleasas/metabolismo , MicroARNs/metabolismo , Estabilidad del ARN , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias del Cuello Uterino/enzimología , Regiones no Traducidas 3' , Antineoplásicos/farmacología , Supervivencia Celular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Doxorrubicina/farmacología , Etopósido/farmacología , Exorribonucleasas/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HeLa , Humanos , MicroARNs/genética , Poliadenilación , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patologíaRESUMEN
All of the cells in our body share largely identical DNA, yet functionally distinct cells are generated to give rise to different tissues and organs. A fundamental question in biology is how different cell fates are specified and maintained. Epigenetic mechanisms hold a key answer to the question. Without changing the sequence of DNA but through modifying DNA, histones, or RNA, epigenetic mechanisms can decide which genes to express and which to suppress. Polycomb group (PcG) proteins are a group of evolutionarily conserved proteins that can regulate gene expression through histone modification. Although PcG proteins have been traditionally described as epigenetic repressors, emerging evidence suggests a more complex scenario in which PcG proteins can have a dynamic effect on gene expression. In this issue of Genes & Development, Cohen and colleagues (pp. 55-60) studied the function of Polycomb-repressive complex 1 (PRC1) in mouse skin development and identified PRC1's unique function independent of PRC2. Notably, the total loss of PRC1 but not canonical PRC1 in the skin leads to widespread down-regulation of genes involved in cell adhesion and cytoskeleton organization, resulting in skin fragility. This new study lays a foundation to examine the role of PRC1 in activating gene expression.
Asunto(s)
Histonas , Complejo Represivo Polycomb 1 , Animales , Núcleo Celular , Epigénesis Genética , Ratones , Proteínas del Grupo PolycombRESUMEN
Stiffness and actomyosin contractility are intrinsic mechanical properties of animal cells required for the shaping of tissues. However, whether tissue stem cells (SCs) and progenitors located within SC niche have different mechanical properties that modulate their size and function remains unclear. Here, we show that hair follicle SCs in the bulge are stiff with high actomyosin contractility and resistant to size change, whereas hair germ (HG) progenitors are soft and periodically enlarge and contract during quiescence. During activation of hair follicle growth, HGs reduce contraction and more frequently enlarge, a process that is associated with weakening of the actomyosin network, nuclear YAP accumulation, and cell cycle reentry. Induction of miR-205, a novel regulator of the actomyosin cytoskeleton, reduces actomyosin contractility and activates hair regeneration in young and old mice. This study reveals the control of tissue SC size and activities by spatiotemporally compartmentalized mechanical properties and demonstrates the possibility to stimulate tissue regeneration by fine-tuning cell mechanics.
Asunto(s)
Folículo Piloso , MicroARNs , Animales , Ratones , Actomiosina/metabolismo , Cabello , Folículo Piloso/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Madre/metabolismoRESUMEN
Co-cultivation of isopod-associated fungi Herpotrichia sp. SF09 and Trametes versicolor SF09A led to the reciprocal induction of thirteen new compounds (1-7 and 9-13) with diverse architectures. Importantly, compounds 1 and 2 are rare fungal sesquiterpene-saccharide hybrids incorporating a xylopyranose moiety, compound (±)-3 represents the first example of a natural linear sesquiterpene racemate, and compound 7 is a rare α-pyrone derivative with a xylopyranose motif. Their structures were elucidated by analysis of NMR and mass spectrometry data, and their absolute configurations were determined by Mosher's method, microscale derivatization, and single-crystal X-ray diffraction, as well as ECD calculations. All the isolated compounds ameliorated MPP+-induced oxidative damage in PC12 cells in a dose-dependent fashion. Among them, compounds 5 and 15 showed significant protective action against neuronal injury by MPP+ at 5 µM. Meanwhile, transcriptome sequencing was performed to evaluate the molecular mechanism of the neuroprotective activity for compound 5. Results indicated that compound 5 might mitigate MPP+-induced neuronal injury through the regulation of multiple signaling pathways, including the PI3K-Akt and MAPK pathways. Our findings suggested that compound 5 could be a promising neuroprotective agent for the treatment of Parkinson's disease.
Asunto(s)
Fármacos Neuroprotectores , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Animales , Células PC12 , Estructura Molecular , Ratas , Sesquiterpenos/farmacología , Sesquiterpenos/química , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Polyporaceae/química , Técnicas de CocultivoRESUMEN
The mammalian myocardium grows rapidly during early development due to cardiomyocyte proliferation, which later transitions to cell hypertrophy to sustain the heart's postnatal growth. Although this cell transition in the postnatal heart is consistently preserved in mammalian biology, little is known about the regulatory mechanisms that link proliferation suppression with hypertrophy induction. We reasoned that the production of a micro-RNA(s) could serve as a key bridge to permit changes in gene expression that control the changed cell fate of postnatal cardiomyocytes. We used sequential expression analysis to identify miR205 as a micro-RNA that was uniquely expressed at the cessation of cardiomyocyte growth. Cardiomyocyte-specific miR205 deletion animals showed a 35% increase in heart mass by 3 months of age, with commensurate changes in cell cycle and Hippo pathway activity, confirming miR205's potential role in controlling cardiomyocyte proliferation. In contrast, overexpression of miR205 in newborn hearts had little effect on heart size or function, indicating a complex, probably redundant regulatory system. These findings highlight miR205's role in controlling the shift from cardiomyocyte proliferation to hypertrophic development in the postnatal period.
Asunto(s)
Corazón , MicroARNs , Miocitos Cardíacos , Animales , Animales Recién Nacidos , Proliferación Celular/genética , Hipertrofia/metabolismo , Mamíferos , Miocitos Cardíacos/metabolismo , RatonesRESUMEN
Herein, a Sc(OTf)3-catalyzed (3+2) annulation of 2-indolylmethanols with propargylic alcohols is reported. The reaction proceeds via a Friedel-Crafts-type allenylation/5-exo-annulation cascade. In the reaction, 2-indolylmethanol is used as a three-carbon synthon, and propargyl alcohol is used as a two-carbon synthon. This method provides a direct and high-yield pathway for synthetically useful cyclopenta[b]indoles. In general, the method features easily accessible substrates with broad scope and generality, the formation of multiple bonds with high efficiency, and easy scale-up.
RESUMEN
Perineuronal nets (PNNs) are specialized extracellular matrix (ECM) structures present in the central nervous system (CNS) and have been identified as significant regulators of developmental plasticity in the developing cortex. PNNs are particularly enriched in the cortex surrounding parvalbumin-expressing (PV+) cells. A growing body of evidence suggests that the abnormalities in PV+ neurons and PNNs are associated with various neurological disorders, including schizophrenia, which is a neurodevelopmental defect disease. The N-methyl-D-aspartate receptor (NMDAR) selective antagonist is frequently employed to establish animal models of schizophrenia in laboratory settings. The crucial involvement of GluN2B-containing NMDARs in the development of CNS has been extensively established. However, the role of GluN2B in the pathophysiology of schizophrenia has yet to be thoroughly investigated. The present study inhibited GluN2B function through intraperitoneal infusion of the GluN2B selective antagonist ifenprodil into juvenile mice aged 3-4 weeks, followed by the administration of social stress when these mice reached 9 weeks of age. Then, immunofluorescence staining was employed to examine the changes in the PNNs and PV+ cells, an acoustic startle and prepulse inhibition test was used to detect activities of the PV+ cells, and Western blot was used to quantify the protein expression levels of GluN2A and GluN2B in the prefrontal cortex (PFC). The study revealed that in the PFC of mice subjected to GluN2B antagonist treatment in early life and social stress in adulthood, there was an increase in the number of PV+ cells wrapped by PNNs, and a decrease in the activation of PV+ cells during the prepulse inhibition test, which is an indicator of sensory gating functions, as well as changes in the protein expression levels of GluN2A and GluN2B, which resulted in an increase in the ratio of GluN2A to GluN2B. These aberrations in the mice are comparable to those observed in animal models and patients with schizophrenia. The findings suggest that even a transient hypofunction of GluN2B in early life poses a significant risk for the emergence of schizophrenia symptoms in adulthood.
Asunto(s)
Receptores de N-Metil-D-Aspartato , Estrés Psicológico , Animales , Humanos , Ratones , Moléculas de Adhesión Celular , Sistema Nervioso Central , Corteza Cerebral , Matriz Extracelular , Proteínas NuclearesRESUMEN
BACKGROUND AND AIMS: Apolipoprotein A-1 (ApoA-1), the major apolipoprotein of high-density lipoprotein, plays anti-atherogenic role in cardiovascular diseases and exerts anti-inflammation effect in various inflammatory and infectious diseases. However, the role and mechanism of ApoA-1 in hepatic ischaemia-reperfusion (I/R) injury is unknown. METHODS: In this study, we measured ApoA-1 expression in human liver grafts after transplantation. Mice partial hepatic I/R injury model was made in ApoA-1 knockout mice, ApoA-1 mimetic peptide D-4F treatment mice and corresponding control mice to examine the effect of ApoA-1 on liver damage, inflammation response and cell death. Primary hepatocytes and macrophages were isolated for in vitro study. RESULTS: The results showed that ApoA-1 expression was down-regulated in human liver grafts after transplantation and mice livers subjected to hepatic I/R injury. ApoA-1 deficiency aggravated liver damage and inflammation response induced by hepatic I/R injury. Interestingly, we found that ApoA-1 deficiency increased pyroptosis instead of apoptosis during acute phase of hepatic I/R injury, which mainly occurred in macrophages rather than hepatocytes. The inhibition of pyroptosis compensated for the adverse impact of ApoA-1 deficiency. Furthermore, the up-regulated pyroptosis process was testified to be mediated by ApoA-1 through TLR4-NF-κB pathway and TLR4 inhibition significantly improved hepatic I/R injury. In addition, we confirmed that D-4F ameliorated hepatic I/R injury. CONCLUSIONS: Our study has identified the protective role of ApoA-1 in hepatic I/R injury through inhibiting pyroptosis in macrophages via TLR4-NF-κB pathway. The effect of ApoA-1 may provide a novel therapeutic approach for hepatic I/R injury.
Asunto(s)
Hepatopatías , Daño por Reperfusión , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Apolipoproteína A-I/farmacología , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/uso terapéutico , Piroptosis , Receptor Toll-Like 4 , Transducción de Señal , Hígado/metabolismo , Hepatopatías/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Macrófagos/metabolismoRESUMEN
BACKGROUND: Photopatch testing represents the gold standard for the diagnosis of photoallergic contact dermatitis (PACD). We aimed to identify common photoallergens in our tertiary dermatological referral centre from 2012 to 2021, to compare this to the preceding period studied, and data from other communities. METHODS: We conducted a retrospective review of all 90 patients who underwent photopatch testing at the National Skin Centre, Singapore, between 2012 and 2021. RESULTS: Of 90 patients, 19 (21.1%) were male, and the mean age was 41.6 years. Eighty-four (93.3%) underwent testing to our standard sunscreen series, 10 (11.1%) to our extended series, and 73 (81.1%) to their own items. Seventeen (18.9%) were diagnosed with PACD (i.e., photocontact allergy with present or past relevance), 12 (13.3%) with ACD, and 4 (4.4%) with photoaugmented ACD. Relevant reactions were commonest to oxybenzone (8, 9.5%) and mexenone (3, 3.6%). Eleven (15.1%) had PACD to their own items, with 3 of 4 (75%) tested to ketoprofen diagnosed with PACD and the remaining 1 (25%) with photoaugmented ACD. Age, race, sex, atopy, and site of involvement were not associated with photocontact allergy. Compared to the preceding time period, the overall frequency of photocontact allergy and PACD decreased, but rates of photoallergic reactions to individual photoallergens were not significantly different. CONCLUSION: Organic ultraviolet absorbers such as oxybenzone and mexenone remained the most relevant photoallergens. Personal item testing was valuable, and testing to ketoprofen should be considered.
Asunto(s)
Dermatitis Fotoalérgica , Cetoprofeno , Humanos , Masculino , Adulto , Femenino , Estudios Retrospectivos , Singapur , Pruebas del Parche , Dermatitis Fotoalérgica/diagnóstico , Dermatitis Fotoalérgica/epidemiología , Dermatitis Fotoalérgica/etiología , Protectores SolaresRESUMEN
Maximal oxygen uptake (VÌO2max ) may be the single most important factor for long-distance running performance. Interval training, enabling high intensity, is forwarded as the format that yields the largest increase in VÌO2max . However, it is uncertain if an optimal outcome on VÌO2max , anaerobic capacity, and running performance is provided by training with a high aerobic intensity or high overall intensity. Thus, we randomized 48 aerobically well-trained men (23 ± 3 years) to three commonly applied interval protocols, one with high aerobic intensity (HIIT) and two with high absolute intensity (sprint interval training; SIT), 3× week for 8 weeks: (1) HIIT: 4 × 4 min at ~95% maximal aerobic speed (MAS) with 3 min active breaks. (2) SIT: 8 × 20 s at ~150% MAS with 10 s passive breaks. (3) SIT: 10 × 30 s at ~175% MAS with 3.5 min active breaks. VÌO2max increased more (p < 0.001) following HIIT, 4 × 4 min (6.5 ± 2.4%, p < 0.001) than SIT, 8 × 20 s (3.3 ± 2.4%, p < 0.001) and SIT, 10 × 30 s (n.s.). This was accompanied by a larger (p < 0.05) increase in stroke volume (O2 -pulse) following HIIT, 4 × 4 min (8.1 ± 4.1%, p < 0.001) compared with SIT, 8 × 20 s (3.8 ± 4.2%, p < 0.01) and SIT, 10 × 30 (n.s.). Anaerobic capacity (maximal accumulated oxygen deficit) increased following SIT, 8 × 20 s (p < 0.05), but not after HIIT, 4 × 4 min, nor SIT, 10 × 30 s. Long-distance (3000-m) endurance performance increased (p < 0.05-p < 0.001) in all groups (HIIT, 4 × 4 min: 5.9 ± 3.2%; SIT, 8 × 20 s: 4.1 ± 3.7%; SIT, 10 × 30 s: 2.2 ± 2.2%), with HIIT increasing more than SIT, 10 × 30 s (p < 0.05). Sprint (300-m) performance exhibited within-group increases in SIT, 8 × 20 s (4.4 ± 2.0%) and SIT, 10 × 30 s (3.3 ± 2.8%). In conclusion, HIIT improves VÌO2max more than SIT. Given the importance of VÌO2max for most endurance performance scenarios, HIIT should typically be the chosen interval format.
Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Carrera , Humanos , Masculino , Estado de Salud , Frecuencia Cardíaca , Entrenamiento de Intervalos de Alta Intensidad/métodos , Consumo de Oxígeno , Adulto Joven , AdultoRESUMEN
Purple membrane (PM) is composed of several native lipids and the transmembrane protein bacteriorhodopsin (bR) in trimeric configuration. The delipidated PM (dPM) samples can be prepared by treating PM with CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) to partially remove native lipids while maintaining bR in the trimeric configuration. By correlating the photocycle kinetics of bR and the exact lipid compositions of the various dPM samples, one can reveal the roles of native PM lipids. However, it is challenging to compare the lipid compositions of the various dPM samples quantitatively. Here, we utilize the absorbances of extracted retinal at 382 nm to normalize the concentrations of the remaining lipids in each dPM sample, which were then quantified by mass spectrometry, allowing us to compare the lipid compositions of different samples in a quantitative manner. The corresponding photocycle kinetics of bR were probed by transient difference absorption spectroscopy. We found that the removal rate of the polar lipids follows the order of BPG ≈ GlyC < S-TGD-1 ≈ PG < PGP-Me ≈ PGS. Since BPG and GlyC have more nonpolar phytanyl groups than other lipids at the hydrophobic tail, causing a higher affinity with the hydrophobic surface of bR, the corresponding removal rates are slowest. In addition, as the reaction period of PM and CHAPS increases, the residual amounts of PGS and PGP-Me significantly decrease, in concomitance with the decelerated rates of the recovery of ground state and the decay of intermediate M, and the reduced transient population of intermediate O. PGS and PGP-Me are the lipids with the highest correlation to the photocycle activity among the six polar lipids of PM. From a practical viewpoint, combining optical spectroscopy and mass spectrometry appears a promising approach to simultaneously track the functions and the concomitant active components in a given biological system.
Asunto(s)
Bacteriorodopsinas , Membrana Púrpura , Bacteriorodopsinas/química , Cinética , Lípidos de la Membrana/análisis , Membrana Púrpura/química , Membrana Púrpura/metabolismo , Análisis EspectralRESUMEN
MicroRNA (miRNA)-mediated regulation is widespread, relatively mild but functionally important. It remains challenging to unequivocally identify miRNA targeted RNAs at a genomic scale and determine how changes in miRNA levels affect the transcriptome. Here, we captured individual miRNAs and their targeted RNA sites in wild-type, miR-200 family knockout and induced epithelial cells. We detected 1797 miRNAs interacting with 13,830 transcripts at 616,127 sites by sequencing 1,230,019 unique miRNA:RNA chimeras. Although mRNA sites that are bound by miRNAs and contain matches to seed sequences confer the strongest regulation, â¼40%-60% of miRNA bound regions do not contain seed matches. Different miRNAs have different preferences to seed matches and 3' end base-pairing. For individual miRNAs, the effectiveness of mRNA regulation is highly correlated with the number of captured miRNA:mRNA chimeras. Notably, elevated miR-200 expression robustly represses existing targets with little impact on newly recognized targets. Global analysis of directly captured mRNA targets reveals pathways that are involved in cancer and cell adhesion and signaling pathways that are highly regulated by many different miRNAs in epithelial cells. Comparison between experimentally captured and TargetScan predicted targets indicates that our approach is more effective in identifying bona fide targets by reducing false positive and negative predictions. This study reveals the global binding landscape and impact of miRNAs on the mammalian transcriptome.
Asunto(s)
MicroARNs/genética , Neoplasias/genética , ARN Mensajero/genética , Transcriptoma/genética , Animales , Adhesión Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Mamíferos , Transducción de Señal/genéticaRESUMEN
A visible-light-induced persulfate-promoted cascade phosphorylation/cyclization reaction to access various phosphorylated pyrrolo[1,2-a]indolediones under mild conditions was developed. Notably, the transformation was carried out with diethyl carbonate/H2O as a green medium at room temperature. More impressively, traditional metal catalysts and photocatalysts could be effectively avoided. The reactions are simple to operate, easy to scale up, and have good functional group tolerance.
RESUMEN
OBJECTIVES: An acute animal experiment was performed to observe factors influencing the functional status of the aortic valve functional status after continuous-flow left ventricular assist device (CF-LVAD) implantation in an ovine model, and a physiologic predictive model was established. METHODS: A CF-LVAD model was established in Small Tail Han sheep. The initial heart rate (HR) was set to 60 beats/min, and grouping was performed at an interval of 20 beats/min. In all groups, the pump speed was started from 2000 rpm and was gradually increased by 50-100 rpm. A multi-channel physiological recorder recorded the HR, aortic pressure, central venous pressure, and left ventricular systolic pressure (LVSP). A double-channel ultrasonic flowmeter was used to obtain real-time artificial vascular blood flow (ABF). A color Doppler ultrasound device was applied to assess the aortic valve functional status. Multivariate dichotomous logistic regression was used to screen significant variables for predicting the functional status of the aortic valve. RESULTS: Observational studies showed that ABF and the risk of aortic valve closure (AVC) were positively correlated with pump speed at the same HR. Meanwhile, the mean arterial pressure (MAP) was unaltered or slightly increased with increased pump speed. When the pump speed was constant, an increase in HR was associated with a decrease in the size of the aortic valve opening. This phenomenon was accompanied by an initial transient increase in the ABF and MAP, which subsequently decreased. Statistical analysis showed that the AVC was associated with increased pump speed (OR = 1.02, 95% CI = 1.01-1.04, p = 0.001), decreased LVSP (OR = 0.95, 95% CI = 0.91-0.98, p = 0.003), and decreased pulse pressure (OR = 0.82, 95% CI = 0.68-0.96, p = 0.026). ABF or MAP was negatively associated with the risk of AVC (OR < 1). The prediction model of AVC after CF-LVAD implantation exhibited good differentiation (AUC = 0.973, 95% CI = 0.978-0.995) and calibration performance (Hosmer-Lemeshow χ2 = 9.834, p = 0.277 > 0.05). CONCLUSIONS: The pump speed, LVSP, ABF, MAP, and pulse pressure are significant predictors of the risk of AVC. Predictive models built from these predictors yielded good performance in differentiating aortic valve opening and closure after CF-LVAD implantation.
Asunto(s)
Insuficiencia Cardíaca , Corazón Auxiliar , Animales , Válvula Aórtica/cirugía , Estado Funcional , Corazón Auxiliar/efectos adversos , Hemodinámica/fisiología , Humanos , OvinosRESUMEN
Postpartum haemorrhage (PPH) is the leading cause of maternal death worldwide, and it may be caused by environmental endocrine disruptors. Prenatal exposure to perfluoroalkyl substances (PFASs) in women has been linked to pregnancy disorders and adverse birth outcomes, but no data are available on the relationship between PFAS exposure during pregnancy and postpartum haemorrhage. This study aimed to explore the associations of maternal PFAS exposure with the postpartum haemorrhage risk and total blood loss. A total of 1496 mother-infant pairs in the Guangxi Zhuang birth cohort were included between June 2015 and May 2018. The concentration of PFASs in serum was detected using ultrahigh liquid chromatography-tandem mass spectrometry. Multiple binomial regression and linear regression models were used to analyse individual PFAS exposures. The mixture of PFASs was analysed using Bayesian Kernel Machine Regression (BKMR). In single substance exposure models, exposure to perfluorohexanesulfonic acid (PFHxS) increased the risk of postpartum haemorrhage (OR: 3.42, 95 % CI: 1.45, 8.07), while exposure to perfluorododecanoic acid (PFDoA) was inversely associated with the risk of postpartum haemorrhage (OR: 0.42, 95 % CI: 0.22, 0.80). The concentrations of perfluoroundecanoic acid (PFUnA) (ß: 0.06, 95 % CI: 12.32, 108.82) and perfluorononanoic acid (PFNA) (ß: 0.05, 95 % CI: 0.40, 88.95) exposure were positively correlated with the amount of postpartum haemorrhage; this result occurred only in the absence of covariate adjustment. In BKMR models, the risk of postpartum haemorrhage increased with increasing exposure to a PFAS mixture. In conclusion, our study suggested that maternal serum PFAS exposure during pregnancy was associated with the risk of postpartum haemorrhage.
Asunto(s)
Ácidos Alcanesulfónicos , Disruptores Endocrinos , Contaminantes Ambientales , Fluorocarburos , Hemorragia Posparto , Ácidos Alcanesulfónicos/toxicidad , Teorema de Bayes , China/epidemiología , Contaminantes Ambientales/toxicidad , Femenino , Fluorocarburos/toxicidad , Humanos , Lactante , Exposición Materna/efectos adversos , Hemorragia Posparto/inducido químicamente , Hemorragia Posparto/epidemiología , EmbarazoRESUMEN
To explore the mechanistic origin that determines the binding affinity of SARS-CoV-2 spike receptor binding domain (RBD) to human angiotensin converting enzyme 2 (ACE2), we constructed the homology models of RBD-ACE2 complexes of four Omicron subvariants (BA.1, BA.2, BA.3 and BA.4/5), and compared them with wild type complex (RBDWT-ACE2) in terms of various structural dynamic properties by molecular dynamics (MD) simulations and binding free energy (BFE) calculations. The results of MD simulations suggest that the RBDs of all the Omicron subvariants (RBDOMIs) feature increased global structural fluctuations when compared with RBDWT. Detailed comparison of BFE components reveals that the enhanced electrostatic attractive interactions are the main determinant of the higher ACE2-binding affinity of RBDOMIs than RBDWT, while the weakened electrostatic attractive interactions determine RBD of BA.4/5 subvariant (RBDBA.4/5) lowest ACE2-binding affinity among all Omicron subvariants. The per-residue BFE decompositions and the hydrogen bond (HB) networks analyses indicate that the enhanced electrostatic attractive interactions are mainly through gain/loss of the positively/negatively charged residues, and the formation or destruction of the interfacial HBs and salt bridges can also largely affect the ACE2-binding affinity of RBD. It is worth pointing out that since Q493R plays the most important positive contribution in enhancing binding affinity, the absence of this mutation in RBDBA.4/5 results in a significantly weaker binding affinity to ACE2 than other Omicron subvariants. Our results provide insight into the role of electrostatic interactions in determining of the binding affinity of SARS-CoV-2 RBD to human ACE2.
Asunto(s)
Enzima Convertidora de Angiotensina 2 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Enzima Convertidora de Angiotensina 2/química , COVID-19 , Mutación , Unión Proteica , Electricidad Estática , Glicoproteína de la Espiga del Coronavirus/químicaRESUMEN
The NAC transcription factor (TF) family is one of the largest TF families in plants, which has been widely reported in rice, maize and common wheat. However, the significance of the NAC TF family in wild emmer wheat (Triticum turgidum ssp. dicoccoides) is not yet well understood. In this study, a genome-wide investigation of NAC genes was conducted in the wild emmer genome and 249 NAC family members (TdNACs) were identified. The results showed that all of these genes contained NAM/NAC-conserved domains and most of them were predicted to be located on the nucleus. Phylogenetic analysis showed that these 249 TdNACs can be classified into seven clades, which are likely to be involved in the regulation of grain protein content, starch synthesis and response to biotic and abiotic stresses. Expression pattern analysis revealed that TdNACs were highly expressed in different wheat tissues such as grain, root, leaves and shoots. We found that TdNAC8470 was phylogenetically close to NAC genes that regulate either grain protein or starch accumulation. Overexpression of TdNAC8470 in rice showed increased grain starch concentration but decreased grain Fe, Zn and Mn contents compared with wild-type plants. Protein interaction analysis indicated that TdNAC8470 might interact with granule-bound starch synthase 1 (TdGBSS1) to regulate grain starch accumulation. Our work provides a comprehensive understanding of the NAC TFs family in wild emmer wheat and establishes the way for future functional analysis and genetic improvement of increasing grain starch content in wheat.
Asunto(s)
Proteínas de Granos , Oryza , Almidón Sintasa , Proteínas de Granos/metabolismo , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Almidón Sintasa/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/genética , Triticum/metabolismoRESUMEN
Hexabromocyclododecanes (HBCDs), a new sort of brominated flame retardants (BFRs), are globally prevalent and recalcitrant toxic environmental pollutants. HBCDs have been found in many environmental media and even in the human body, leading to serious health concerns. HBCDs are biodegradable in the environment. By now, dozens of bacteria have been discovered with the ability to transform HBCDs. Microbial debromination of HBCDs is via HBr-elimination, HBr-dihaloelimination, and hydrolytic debromination. Biotic transformation of HBCDs yields many hydroxylated and lower brominated compounds which lack assessment of ecological toxicity. Bioremediation of HBCD pollution has only been applied in the laboratory. Here, we review the current knowledge about microbial debromination of HBCDs, aiming to promote the bioremediation applied in HBCD contaminated sites. KEY POINTS: ⢠Microbial debromination of HBCDs is via hydrolytic debromination, HBr-elimination, and HBr-dihaloelimination. ⢠Newly occurred halogenated contaminants such as HBCDs hitch the degradation pathway tamed by previously discharged anthropogenic organohalides. ⢠Strategy that combines bioaugmentation with phytoremediation for bioremediation of HBCD pollution is promising.
Asunto(s)
Contaminantes Ambientales , Retardadores de Llama , Hidrocarburos Bromados , Biodegradación Ambiental , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Humanos , Hidrocarburos Bromados/análisisRESUMEN
OBJECTIVE: Our objective was to investigate the management of patients with asymptomatic suspicious thyroid nodules ≤1 cm. METHODS: We retrospectively reviewed medical records of patients with sonographically suspicious thyroid nodules ≤1 cm and without distant metastases, suspicious lymph node metastasis (LNM), or extrathyroidal extension (ETE). RESULTS: Of the 386 enrolled patients, 174 (45.1%) had immediate surgery (IS), while 212 (54.9%) underwent active surveillance (AS). In the IS group, 166 (95.4%) patients were confirmed as having papillary thyroid microcarcinoma. LNM and ETE were observed in 24.7% and 2.4% cases, respectively. In the AS group, nodule size increased by ≥3 mm in 11 (5.2%) patients and 39 (18.4%) had a >50% increase in nodule volume after a median follow-up of 12 months. Nodules with smaller volume at diagnosis were more likely to increase in volume later. Newly suspicious LNM was detected in 23 (10.8%) patients. Delayed surgery (DS) was performed in 101 patients, with 27 showing disease progression. ETE and LNM were detected in 3% and 36%, respectively, of patients with papillary thyroid microcarcinoma. Compared with IS, tumors in the DS group more frequently showed lateral LNM and capsular invasion (P < .05). No patient had recurrence or died of thyroid cancer during postoperative follow-up (median 26 [4-60] months). CONCLUSIONS: IS or DS of patients with asymptomatic suspicious thyroid nodules ≤1 cm was relatively high in China. The inertia of low-risk nodules and the effectiveness of DS for those that progressed make AS a feasible strategy.