Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(35): e2400446121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39150777

RESUMEN

The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) is a growing concern due to its high mortality and limited treatment options. Although hypermucoviscosity is crucial for CR-hvKp infection, the role of changes in bacterial mucoviscosity in the host colonization and persistence of CR-hvKp is not clearly defined. Herein, we observed a phenotypic switch of CR-hvKp from a hypermucoviscous to a hypomucoviscous state in a patient with scrotal abscess and urinary tract infection (UTI). This switch was attributed to decreased expression of rmpADC, the regulator of mucoid phenotype, caused by deletion of the upstream insertion sequence ISKpn26. Postswitching, the hypomucoid variant showed a 9.0-fold decrease in mice sepsis mortality, a >170.0-fold reduction in the ability to evade macrophage phagocytosis in vitro, and an 11.2- to 40.9-fold drop in growth rate in normal mouse serum. Conversely, it exhibited an increased residence time in the mouse urinary tract (21 vs. 6 d), as well as a 216.4-fold boost in adhesion to bladder epithelial cells and a 48.7% enhancement in biofilm production. Notably, the CR-hvKp mucoid switch was reproduced in an antibiotic-free mouse UTI model. The in vivo generation of hypomucoid variants was primarily associated with defective or low expression of rmpADC or capsule synthesis gene wcaJ, mediated by ISKpn26 insertion/deletion or base-pair insertion. The spontaneous hypomucoid variants also outcompeted hypermucoid bacteria in the mouse urinary tract. Collectively, the ISKpn26-associated mucoid switch in CR-hvKp signifies the antibiotic-independent host adaptive evolution, providing insights into the role of mucoid switch in the persistence of CR-hvKp.


Asunto(s)
Carbapenémicos , Infecciones por Klebsiella , Klebsiella pneumoniae , Infecciones Urinarias , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/genética , Animales , Humanos , Infecciones por Klebsiella/microbiología , Infecciones Urinarias/microbiología , Ratones , Carbapenémicos/farmacología , Masculino , Virulencia/genética , Antibacterianos/farmacología , Sistema Urinario/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
J Am Chem Soc ; 146(10): 6744-6752, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38422617

RESUMEN

Zinc-iodine batteries are one of the most intriguing types of batteries that offer high energy density and low toxicity. However, the low intrinsic conductivity of iodine, together with high polyiodide solubility in aqueous electrolytes limits the development of high-areal-capacity zinc-iodine batteries with high stability, especially at low current densities. Herein, we proposed a hydrophobic polyiodide ionic liquid as a zinc-ion battery cathode, which successfully activates the iodine redox process by offering 4 orders of magnitude higher intrinsic electrical conductivity and remarkably lower solubility that suppressed the polyiodide shuttle in a dual-plating zinc-iodine cell. By the molecular engineering of the chemical structure of the polyiodide ionic liquid, the electronic conductivity can reach 3.4 × 10-3 S cm-1 with a high Coulombic efficiency of 98.2%. The areal capacity of the zinc-iodine battery can achieve 5.04 mAh cm-2 and stably operate at 3.12 mAh cm-2 for over 990 h. Besides, a laser-scribing designed flexible dual-plating-type microbattery based on a polyiodide ionic liquid cathode also exhibits stable cycling in both a single cell and 4 × 4 integrated cell, which can operate with the polarity-switching model with high stability.

3.
J Antimicrob Chemother ; 79(6): 1309-1312, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38564262

RESUMEN

OBJECTIVES: To evaluate the performance of an in-house developed disk diffusion method for aztreonam in combination with avibactam against Enterobacteriales. METHODS: The in vitro antibacterial activity of aztreonam with avibactam against 204 carbapenemase-producing Enterobacteriales was determined by a disk diffusion method, with a broth microdilution method as a reference. RESULTS: The optimal S/R breakpoints for disk diffusion tests of 30/20 and 10/4 µg disks, calculated by the dBETs software using the model-based approaches, were ≥22/≤21 and ≥12/≤11 mm, respectively. On the basis of the estimated breakpoints, the CAs for disk diffusion tests of 30/20 and 10/4 µg aztreonam/avibactam disks were both 98.0%, with 0.5% major error and 37.5% very major error. CONCLUSIONS: The home-made disk diffusion method is an economical and practical method for clinical microbiology laboratories to determine the antibacterial susceptibility of aztreonam with avibactam against Enterobacteriales.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Aztreonam , Pruebas Antimicrobianas de Difusión por Disco , Enterobacteriaceae , Aztreonam/farmacología , Compuestos de Azabiciclo/farmacología , Antibacterianos/farmacología , Enterobacteriaceae/efectos de los fármacos , Pruebas Antimicrobianas de Difusión por Disco/métodos , Pruebas Antimicrobianas de Difusión por Disco/normas , Pruebas de Sensibilidad Microbiana/métodos , Pruebas de Sensibilidad Microbiana/normas , Humanos
4.
Artículo en Inglés | MEDLINE | ID: mdl-38970691

RESUMEN

To evaluate the in vitro activity of ampicillin-sulbactam and cefoperazone-sulbactam against A. baumannii using the broth disk elution testing, a total of 150 A. baumannii isolates were collected from across China between January 2019 and January 2021, including 51 carbapenem-susceptible and 99 carbapenem-resistant isolates. Broth disk elution (BDE) and the broth microdilution (BMD) method were performed for all strains. The concentration range of the BDE was 10/10 µg/mL, 20/20 µg/mL, and 30/30 µg/mL for ampicillin-sulbactam, and 37.5/15 µg/mL, 75/30 µg/mL, 112.5/45 µg/mL, and 150/60 µg/mL for cefoperazone-sulbactam, respectively. Compared with BMD, the BDE results of ampicillin-sulbactam and cefoperazone-sulbactam showed a categorical agreement of 83.3% (125/150) and 95.3% (143/150), with minor errors of 16.7% (25/150) and 4.7% (7/150), respectively. No major error or very major errors were detected. The sensitivity differences by BDE of carbapenem-resistant A. baumannii (CRAb) to different concentrations of ampicillin-sulbactam showed statistically significant (p < 0.017), while those to cefoperazone-sulbactam at 37.5/15 µg/mL, 75/30 µg/mL, and 112.5/45 µg/mL were significant (p < 0.008). However, no significant difference in sensitivity was observed between 112.5/45 µg/mL and 150/60 µg/mL (p > 0.008). In conclusion, the BDE is a reliable and convenient method to detect the in vitro activity of cefoperazone-sulbactam against A. baumannii, and the results could serve as a clinical reference value when deciding whether or not to use high-dose sulbactam for the treatment of A. baumannii infections.

5.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39096160

RESUMEN

AIMS: Adequately and accurately identifying carbapenemase-producing Enterobacterales (CPE) is vital for selecting appropriate antimicrobial therapy and implementing effective infection control measures. This study aims to optimize the phenotypic detection method of carbapenemase for routine diagnostics in clinical microbiology laboratories. METHODS AND RESULTS: Carbapenemase genes in 2665 non-duplicate CRE clinical strains collected from various regions of China were confirmed through whole-genome sequencing (WGS). The carbapenemase inhibition test (CIT) was conducted and interpreted using different methods and breakpoints, then compared with the NG-Test CARBA 5 for carbapenemase detection. The diagnostic performance of the CIT method was optimal when the carbapenemase types were determined by comparing the inhibition zone diameters of the imipenem disc with 3-aminophenylboronic acid (APB) plus ethylenediaminetetraacetic acid (EDTA) to those of the imipenem disc with either APB or EDTA alone, with a breakpoint of 4 mm. The overall sensitivities of the current CIT, the modified CIT, and NG-Test CARBA 5 were 91.4%, 94.9%, and 99.9%, respectively. For detecting isolates co-producing Klebsiella pneumoniae carbapenemase (KPC) and metallo-ß-lactamases (MBLs), the modified CIT method had higher sensitivity than the current method (70.0% vs. 53.3%), though this difference was not statistically significant (P = 0.063). The NG-Test CARBA 5 showed excellent performance for multi-carbapenemases diagnosis, with sensitivity and specificity of 97.1% and 100%, respectively. CONCLUSIONS: Optimizing and standardizing the CIT method for clinical use is necessary. It has certain advantages in diagnosing multi-carbapenemase and rare carbapenemase production. However, for identifying common carbapenemase types, the NG-Test CARBA 5 demonstrated superior performance.


Asunto(s)
Proteínas Bacterianas , beta-Lactamasas , beta-Lactamasas/metabolismo , beta-Lactamasas/análisis , Proteínas Bacterianas/metabolismo , Humanos , China , Imipenem/farmacología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Enterobacteriaceae Resistentes a los Carbapenémicos/enzimología , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Sensibilidad y Especificidad , Secuenciación Completa del Genoma , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/enzimología , Enterobacteriaceae/aislamiento & purificación , Infecciones por Enterobacteriaceae/microbiología
6.
Angew Chem Int Ed Engl ; 63(32): e202407067, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38771481

RESUMEN

The instability of the solid electrolyte interface (SEI) is a critical challenge for the zinc metal anodes, leading to an erratic electrode/electrolyte interface and hydrogen evolution reaction (HER), ultimately resulting in anode failure. This study uncovers that the fluorine species dissolution is the root cause of SEI instability. To effectively suppress the F- dissolution, an introduction of a low-polarity molecule, 1,4-thioxane (TX), is proposed, which reinforces the stability of the fluorine-rich SEI. Moreover, the TX molecule has a strong affinity for coordinating with Zn2+ and adsorbing at the electrode/electrolyte interface, thereby diminishing the activity of local water and consequently impeding SEI dissolution. The robust fluorine-rich SEI layer promotes the high durability of the zinc anode in repeated plating/stripping cycles, while concurrently suppressing HER and enhancing Coulombic efficiency. Notably, the symmetric cell with TX demonstrates exceptional electrochemical performance, sustaining over 500 hours at 20 mA cm-2 with 10 mAh cm-2. Furthermore, the Zn||KVOH full cell exhibits excellent capacity retention, averaging 6.8 mAh cm-2 with 98 % retention after 400 cycles, even at high loading with a lean electrolyte. This work offers a novel perspective on SEI dissolution as a key factor in anode failure, providing valuable insights for the electrolyte design in energy storage devices.

7.
ACS Omega ; 9(12): 14436-14441, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559932

RESUMEN

The thia-Diels-Alder reaction represents a versatile synthetic method for the preparation of six-membered sulfur-containing compounds. However, the mechanism of the thia-Diels-Alder reactions remains unclear. In this work, time-resolved spectroscopic experiments and DFT calculations demonstrate that phenacyl sulfide undergoes Norrish II cleavage to produce thioaldehyde, and ortho-hydroxy benzhydryl alcohol occurs in a dehydration reaction to generate o-QMs using diphenylphosphate as the catalyst. Then, the thia-Diels-Alder reaction takes place between thioaldehyde and o-QMs by an asynchronous concerted mechanism. The illustration of the thia-Diels-Alder reaction mechanism not only provides important support for organic synthesis and drug design but also enhances fundamental insights into reaction pathways and catalytic processes in the field of chemical synthesis.

8.
Int J Antimicrob Agents ; 64(2): 107211, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795927

RESUMEN

Providencia species are important opportunistic pathogens for humans and are associated with several infectious diseases. In this study, we found three clinical strains belonging to a novel Providencia species, namely Providencia huashanensis, including strains CRE-3FA-0001T, CRE-138-0026, and CRE-138-0111. These strains were recovered from three patients, and all of them were associated with nosocomial infections, including incision infection, urinary tract infection, and intracranial infection. The three strains showed high-level resistance to many types of antimicrobials, including amikacin, aztreonam, ceftazidime, cefepime, ciprofloxacin, colistin, polymyxin B, imipenem, meropenem, ceftazidime-avibactam, imipenem-relebactam. Investigation of the resistance mechanism revealed that acquired resistance genes such as blaKPC, blaNDM, blaPER, blaOXA, aac, ant, and qnrD, played an important role in the multi-drug-resistant phenotype for the three strains. The phylogenetic trees were reconstructed based on the 16S rRNA gene sequences, multi-locus sequence analysis, and core single nucleotide polymorphisms. The genome sequence of the strains had a range of 83.5%-85.8% average nucleotide identity and 21%-25.5% in silico DNA-DNA hybridization scores with other Providencia type strains. The average nucleotide identity and in silico DNA-DNA hybridization values and the phylogenetic trees indicated that the strains CRE-3FA-0001T, CRE-138-0026, and CRE-138-0111 strains should be considered as a novel species of the genus Providencia, for which the name P. huashanensis sp. nov. is proposed. The type strain is CRE-3FA-0001T = China Center for Type Culture Collection AB 2023186T = Korean Collection for Type Cultures 8373T.


Asunto(s)
Antibacterianos , Infección Hospitalaria , Farmacorresistencia Bacteriana Múltiple , Infecciones por Enterobacteriaceae , Pruebas de Sensibilidad Microbiana , Filogenia , Providencia , ARN Ribosómico 16S , Humanos , Antibacterianos/farmacología , Infección Hospitalaria/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Enterobacteriaceae/microbiología , Tipificación de Secuencias Multilocus , Polimorfismo de Nucleótido Simple , Providencia/genética , Providencia/efectos de los fármacos , Providencia/aislamiento & purificación , ARN Ribosómico 16S/genética , Infecciones Urinarias/microbiología
9.
Emerg Microbes Infect ; 13(1): 2361007, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38801099

RESUMEN

Ceftazidime-avibactam resistance attributable to the blaKPC-2 gene mutation is increasingly documented in clinical settings. In this study, we characterized the mechanisms leading to the development of ceftazidime-avibactam resistance in ST11-K47 hypervirulent Klebsiella pneumoniae that harboured the blaKPC-135 gene. This strain possessed fimbriae and biofilm, demonstrating pathogenicity. Compared with the wild-type KPC-2 carbapenemase, the novel KPC-135 enzyme exhibited a deletion of Glu168 and Leu169 and a 15-amino acid tandem repeat between Val262 and Ala276. The blaKPC-135 gene was located within the Tn6296 transposon truncated by IS26 and carried on an IncFII/IncR-type plasmid. Compared to the blaKPC-2-positive cloned strain, only the MIC of ceftazidime increased against blaKPC-135-positive K. pneumoniae and wasn't inhibited by avibactam (MIC 32 µg/mL), while clavulanic acid and vaborbactam demonstrated some inhibition. Kinetic parameters revealed that KPC-135 exhibited a lower Km and kcat/Km with ceftazidime and carbapenems, and a higher (∼26-fold) 50% inhibitory concentration with avibactam compared to KPC-2. The KPC-135 enzyme exerted a detrimental effect on fitness relative to the wild-type strain. Furthermore, this strain possessed hypervirulent determinants, which included the IncHI1B/FIB plasmid with rmpA2 and expression of type 1 and 3 fimbriae. In conclusion, we reported a novel KPC variant, KPC-135, in a clinical ST11-K47 hypervirulent K. pneumoniae strain, which conferred ceftazidime-avibactam resistance, possibly through increased ceftazidime affinity and decreased avibactam susceptibility. This strain simultaneously harboured resistance and virulence genes, posing an elevated challenge in clinical treatment.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Proteínas Bacterianas , Ceftazidima , Combinación de Medicamentos , Infecciones por Klebsiella , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , Ceftazidima/farmacología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/enzimología , Compuestos de Azabiciclo/farmacología , Antibacterianos/farmacología , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/tratamiento farmacológico , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Virulencia , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana Múltiple/genética , Plásmidos/genética , Animales
10.
Emerg Microbes Infect ; 13(1): 2356146, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38743401

RESUMEN

Ceftazidime-avibactam (CZA) is employed for the treatment of infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-KP). Resistance to CZA is frequently linked to point mutations in the blaKPC. We conducted in vitro simulations of in vivo blaKPC mutations using CZA. Four pre-therapy KPC-KP isolates (K1, K2, K3, and K4) were evaluated, all initially exhibited susceptibility to CZA and produced KPC-2. The crucial distinction was that following CZA treatment, the blaKPC-2 mutated in K1, K2, and K3, rendering them resistant to CZA, while K4 achieved microbiological clearance, and blaKPC-2 remained unaltered. The induction assay identified various blaKPC-2 variants, including blaKPC-25, blaKPC-127, blaKPC-100, blaKPC-128, blaKPC-137, blaKPC-138, blaKPC-144 and blaKPC-180. Our findings suggest that the resistance of KPC-KP to CZA primarily results from the emergence of KPC variants, complemented by increased blaKPC expression. A close correlation exists between avibactam concentration and the rate of increased CZA minimum Inhibitory concentration, as well as blaKPC mutation. Inadequate avibactam concentration is more likely to induce resistance in strains against CZA, there is also a higher likelihood of mutation in the blaKPC-2 and the optimal avibactam ratio remains to be determined. Simultaneously, we selected a blaKPC-33-producing K. pneumoniae strain (mutated from blaKPC-2) and induced it with imipenem and meropenem, respectively. The blaKPC-2 was detected during the process, indicating that the mutation is reversible. Clinical use of carbapenems to treat KPC variant strains increases the risk of infection, as the gene can mutate back to blaKPC-2, rendering the strain even more cross-resistant to carbapenems and CZA.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Proteínas Bacterianas , Ceftazidima , Combinación de Medicamentos , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , Ceftazidima/farmacología , Compuestos de Azabiciclo/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Mutación , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/tratamiento farmacológico , Fenotipo , Hidrólisis , Cinética
11.
Int J Antimicrob Agents ; 64(3): 107265, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38964622

RESUMEN

More and more ceftazidime-avibactam-resistant KPC-producing Klebsiella pneumoniae have been reported with its widespread use, and the detection rate of KPC variants has increased dramatically. However, the evolutionary mechanism and fitness effects during KPC mutation remained unknown. Here, we report the complex in vivo evolutionary trajectories of two novel KPC variants, KPC-155 (L169P/GT242A) and KPC-185 (D179Y/GT242A), from K. pneumoniae in the same patient. The novel variants were shown to confer ceftazidime-avibactam resistance but restore carbapenem susceptibility based on the results of plasmid transformation assays, cloning experiments, and enzyme kinetic measurements. In vitro, competition experiments highlighted the adaptive advantage conferred by strains carrying these KPC variants, which could lead to the rapid spread of these ceftazidime-avibactam-resistant strains. The growth curve indicated that blaKPC-185 had better growth conditions at lower avibactam concentration compared to blaKPC-155, which was consistent with ceftazidime-avibactam use in vivo. In addition, replicative transposition of the IS26-flanked translocatable unit (IS26-ISKpn6-blaKPC-ISKpn27-IS26) also contributes to the blaKPC amplification and formation of two copies (blaKPC-2 and blaKPC-185), conferring both carbapenem and ceftazidime-avibactam resistance. However, strains with double copies showed reduced competitive advantage and configuration stability. The comparative plasmid analysis of IS26 group (IS26-blaKPC-IS26) and Tn1721 group (Tn1721-blaKPC-IS26) revealed that IS26-insertion could influence the distribution of resistance genes and ability of self-conjugation. The dynamic changes in blaKPC configuration highlight the need for consistent monitoring including antimicrobial susceptibility testing and determination of blaKPC subtypes - during clinical treatment, especially when ceftazidime-avibactam is administered.

12.
Emerg Microbes Infect ; 13(1): 2337678, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38629492

RESUMEN

Despite carbapenems not being used in animals, carbapenem-resistant Enterobacterales (CRE), particularly New Delhi metallo-ß-lactamase-producing CRE (NDM-CRE), are prevalent in livestock. Concurrently, the incidence of human infections caused by NDM-CRE is rising, particularly in children. Although a positive association between livestock production and human NDM-CRE infections at the national level was identified, the evidence of direct transmission of NDM originating from livestock to humans remains largely unknown. Here, we conducted a cross-sectional study in Chengdu, Sichuan Province, to examine the prevalence of NDM-CRE in chickens and pigs along the breeding-slaughtering-retail chains, in pork in cafeterias of schools, and in colonizations and infections from children's hospital and examined the correlation of NDM-CRE among animals, foods and humans. Overall, the blaNDM increases gradually along the chicken and pig breeding (4.70%/2.0%) -slaughtering (7.60%/22.40%) -retail (65.56%/34.26%) chains. The slaughterhouse has become a hotspot for cross-contamination and amplifier of blaNDM. Notably, 63.11% of pork from the school cafeteria was positive for blaNDM. The prevalence of blaNDM in intestinal and infection samples from children's hospitals was 21.68% and 19.80%, respectively. whole genome sequencing (WGS) analysis revealed the sporadic, not large-scale, clonal spread of NDM-CRE along the chicken and pig breeding-slaughtering-retail chain, with further spreading via IncX3-blaNDM plasmid within each stage of whole chains. Clonal transmission of NDM-CRE is predominant in children's hospitals. The IncX3-blaNDM plasmid was highly prevalent among animals and humans and accounted for 57.7% of Escherichia coli and 91.3% of Klebsiella pneumoniae. Attention should be directed towards the IncX3 plasmid to control the transmission of blaNDM between animals and humans.


Asunto(s)
Infecciones por Enterobacteriaceae , Enterobacteriaceae , Niño , Humanos , Animales , Porcinos , Enterobacteriaceae/genética , Estudios Transversales , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Pollos , Escherichia coli/genética , beta-Lactamasas/genética , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/veterinaria , Klebsiella pneumoniae/genética , Plásmidos
13.
NPJ Precis Oncol ; 8(1): 24, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291241

RESUMEN

Metabolic reprogramming has been observed in cancer metastasis, whereas metabolic changes required for malignant cells during lymph node metastasis of esophageal squamous cell carcinoma (ESCC) are still poorly understood. Here, we performed single-cell RNA sequencing (scRNA-seq) of paired ESCC tumor tissues and lymph nodes to uncover the reprogramming of tumor microenvironment (TME) and metabolic pathways. By integrating analyses of scRNA-seq data with metabolomics of ESCC tumor tissues and plasma samples, we found nicotinate and nicotinamide metabolism pathway was dysregulated in ESCC patients with lymph node metastasis (LN+), exhibiting as significantly increased 1-methylnicotinamide (MNA) in both tumors and plasma. Further data indicated high expression of N-methyltransferase (NNMT), which converts active methyl groups from the universal methyl donor, S-adenosylmethionine (SAM), to stable MNA, contributed to the increased MNA in LN+ ESCC. NNMT promotes epithelial-mesenchymal transition (EMT) and metastasis of ESCC in vitro and in vivo by inhibiting E-cadherin expression. Mechanically, high NNMT expression consumed too much active methyl group and decreased H3K4me3 modification at E-cadherin promoter and inhibited m6A modification of E-cadherin mRNA, therefore inhibiting E-cadherin expression at both transcriptional and post-transcriptional level. Finally, a detection method of lymph node metastasis was build based on the dysregulated metabolites, which showed good performance among ESCC patients. For lymph node metastasis of ESCC, this work supports NNMT is a master regulator of the cross-talk between cellular metabolism and epigenetic modifications, which may be a therapeutic target.

14.
China CDC Wkly ; 5(52): 1155-1160, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38164466

RESUMEN

What is already known about this topic?: Bacterial resistance surveillance is crucial for monitoring and understanding the trends and spread of drug-resistant bacteria. What is added by this report?: The number of strains collected in 2022 increased compared to 2021. The top five bacteria, including Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, remained largely unchanged. The detection rate of methicillin-resistant strains continued to decrease. Among clinical Enterobacterales isolates, the resistance rate to carbapenems was generally below 13%, except for Klebsiellaspp., which had a resistance range of 20.4% to 21.9%. Most clinical Enterobacterales isolates were highly susceptible to tigecycline, colistin, and polymyxin B, with resistance rates ranging from 0.1% to 12.6%. The detection rate of meropenem-resistant P. aeruginosa and meropenem-resistant Acinetobacter baumannii showed a decreasing trend for the fourth consecutive year. What are the implications for public health practice?: Multidrug-resistant bacteria remain a significant public health challenge in clinical antimicrobial treatment. To effectively address bacterial resistance, it is essential to enhance both bacterial resistance surveillance and the prudent use of antimicrobial agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA