Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(31): 21240-21248, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39073462

RESUMEN

The formation of aggregates was studied in arginine aqueous solutions using light scattering. The main driving force for aggregate formation is hydrogen bonding between the arginine (Arg) amino acids, which is partially verified using density functional theory calculations. The measurement of energy loss during this process, coupled with Cryo-EM morphology data, indicates that these aggregates are in the solid state. The aggregation occurs in two steps, with a liquid intermediate stage. The investigation of the effect of pH and solute concentration on aggregate formation for other amino acid aqueous solutions verifies that aggregate formation is amino-acid specific, while small-sized clusters formed by weak interactions lead to large-sized aggregation. The water structure around amino acid molecules sheds light on the prediction of their aggregate formation. Homochirality is observed in the aggregates; its existence sheds light on the origin of protein homochirality.

2.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612411

RESUMEN

Biofilm formation plays a crucial role in the pathogenesis of Candida albicans and is significantly associated with resistance to antifungal agents. Tea seed saponins, a class of non-ionic triterpenes, have been proven to have fungicidal effects on planktonic C. albicans. However, their anti-biofilm activity and mechanism of action against C. albicans remain unclear. In this study, the effects of three Camellia sinensis seed saponin monomers, namely, theasaponin E1 (TE1), theasaponin E2 (TE2), and assamsaponin A (ASA), on the metabolism, biofilm development, and expression of the virulence genes of C. albicans were evaluated. The results of the XTT reduction assay and crystal violet (CV) staining assay demonstrated that tea seed saponin monomers concentration-dependently suppressed the adhesion and biofilm formation of C. albicans and were able to eradicate mature biofilms. The compounds were in the following order in terms of their inhibitory effects: ASA > TE1 > TE2. The mechanisms were associated with reductions in multiple crucial virulence factors, including cell surface hydrophobicity (CSH), adhesion ability, hyphal morphology conversion, and phospholipase activity. It was further demonstrated through qRT-PCR analysis that the anti-biofilm activity of ASA and TE1 against C. albicans was attributed to the inhibition of RAS1 activation, which consequently suppressed the cAMP-PKA and MAPK signaling pathways. Conversely, TE2 appeared to regulate the morphological turnover and hyphal growth of C. albicans via a pathway that was independent of RAS1. These findings suggest that tea seed saponin monomers are promising innovative agents against C. albicans.


Asunto(s)
Candida albicans , Ácido Oleanólico/análogos & derivados , Saponinas , Saponinas/farmacología , Biopelículas ,
3.
Compr Rev Food Sci Food Saf ; 23(4): e13406, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39030800

RESUMEN

Tea is the second largest nonalcoholic beverage in the world due to its characteristic flavor and well-known functional properties in vitro and in vivo. Global tea production reaches 6.397 million tons in 2022 and continues to rise. Fresh tea leaves are mainly harvested in spring, whereas thousands of tons are discarded in summer and autumn. Herein, pruned tea biomass refers to abandon-plucked leaves being pruned in the non-plucking period, especially in summer and autumn. At present, no relevant concluding remarks have been made on this undervalued biomass. This review summarizes the seasonal differences of intrinsic metabolites and pays special attention to the most critical bioactive and flavor compounds, including polyphenols, theanine, and caffeine. Additionally, meaningful and profound methods to transform abandon-plucked fresh tea leaves into high-value products are reviewed. In summer and autumn, tea plants accumulate much more phenols than in spring, especially epigallocatechin gallate (galloyl catechin), anthocyanins (catechin derivatives), and proanthocyanidins (polymerized catechins). Vigorous carbon metabolism induced by high light intensity and temperature in summer and autumn also accumulates carbohydrates, such as soluble sugars and cellulose. The characteristics of abandon-plucked tea leaves make them not ideal raw materials for tea, but suitable for novel tea products like beverages and food ingredients using traditional or hybrid technologies such as enzymatic transformation, microbial fermentation, formula screening, and extraction, with the abundant polyphenols in summer and autumn tea serving as prominent flavor and bioactive contributors.


Asunto(s)
Biomasa , Camellia sinensis , Hojas de la Planta , Polifenoles , Hojas de la Planta/química , Camellia sinensis/química , Polifenoles/análisis , Alimentos Funcionales , Estaciones del Año , Té/química , Cafeína , Catequina/química , Catequina/análogos & derivados , Glutamatos
4.
Crit Rev Food Sci Nutr ; : 1-22, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37009832

RESUMEN

Matcha, a powder processed from tea leaves, has a unique green tea flavor and appealing color, in addition to many other sought after functional properties for a wide range of formulated food applications (e.g., dairy products, bakery products, and beverage). The properties of matcha are influenced by cultivation method and processing post-harvest. The transition from drinking tea infusion to eating whole leaves provides a healthy option for the delivery of functional component and tea phenolics in various food matrix. The aim of this review is to describe the physico-chemical properties of matcha, the specific requirements for tea cultivation and industrial processing. The quality of matcha mainly depends on the quality of fresh tea leaves, which is affected by preharvest factors including tea cultivar, shading treatment, and fertilization. Shading is the key measure to increase greenness, reduce bitterness and astringency, and enhance umami taste of matcha. The potential health benefits of matcha and the gastrointestinal fate of main phenolics in matcha are covered. The chemical compositions and bioactivities of fiber-bound phenolics in matcha and other plant materials are discussed. The fiber-bound phenolics are considered promising components which endow matcha with boosted bioavailability of phenolics and health benefits through modulating gut microbiota.

5.
Int J Mol Sci ; 24(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37298302

RESUMEN

Candida albicans is an opportunistic human fungal pathogen, and its drug resistance is becoming a serious problem. Camellia sinensis seed saponins showed inhibitory effects on resistant Candida albicans strains, but the active components and mechanisms are unclear. In this study, the effects and mechanisms of two Camellia sinensis seed saponin monomers, theasaponin E1 (TE1) and assamsaponin A (ASA), on a resistant Candida albicans strain (ATCC 10231) were explored. The minimum inhibitory concentration and minimum fungicidal concentration of TE1 and ASA were equivalent. The time-kill curves showed that the fungicidal efficiency of ASA was higher than that of TE1. TE1 and ASA significantly increased the cell membrane permeability and disrupted the cell membrane integrity of C. albicans cells, probably by interacting with membrane-bound sterols. Moreover, TE1 and ASA induced the accumulation of intracellular ROS and decreased the mitochondrial membrane potential. Transcriptome and qRT-PCR analyses revealed that the differentially expressed genes were concentrated in the cell wall, plasma membrane, glycolysis, and ergosterol synthesis pathways. In conclusion, the antifungal mechanisms of TE1 and ASA included the interference with the biosynthesis of ergosterol in fungal cell membranes, damage to the mitochondria, and the regulation of energy metabolism and lipid metabolism. Tea seed saponins have the potential to be novel anti-Candida albicans agents.


Asunto(s)
Candida albicans , Saponinas , Humanos , Antifúngicos/farmacología , Antifúngicos/metabolismo , Saponinas/farmacología , Saponinas/metabolismo , Ergosterol/metabolismo , Pruebas de Sensibilidad Microbiana
6.
Crit Rev Food Sci Nutr ; : 1-11, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35900156

RESUMEN

Volatile organic compounds (VOCs) are produced by plants responding to biotic and abiotic stresses. According to their biosynthetic sources, induced VOCs are divided into three major classes: terpenoids, phenylpropanoid/benzenoid, and fatty acid derivatives. These compounds with specific aroma characteristics importantly contribute to the aroma quality of oolong tea. Shaking and rocking is the crucial procedure for the aroma formation of oolong tea by exerting mechanical damage to fresh tea leaves. Abundant studies have been carried out to investigate the formation mechanisms of VOCs during oolong tea processing in recent years. This review systematically introduces the biosynthesis of VOCs in plants, and the volatile changes due to biotic and abiotic stresses are summarized and expatiated, using oolong tea as an example.

7.
J Sci Food Agric ; 102(12): 5399-5410, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35332546

RESUMEN

BACKGROUND: Floral and sweet odors are two typical characteristic aromas of Congou black tea, but their aroma-active compounds are still unclear. Characterizing the key aroma-active compounds can provide a theoretical foundation for the practical aroma quality evaluation of Congou black tea and directional processing technology of high-quality black tea with floral or sweet odors. Gas chromatography-olfactometry (GC-O) combined with odor activity value (OAV) is often used to screen key aroma-active substances, but the interaction between aroma components and their impact on the overall sensory quality is ignored. Therefore, in this study, OAV combined with variable importance in projection (VIP) and Spearman correlation analysis (SCA) were used to characterize the aroma-active components of Congou black teas with floral and sweet odors. RESULTS: Eighty-five volatiles were identified in these samples using gas chromatography-mass spectrometry (GC-MS). Twenty-three compounds were identified as potential markers for the floral and sweet odors of Congou black teas from orthogonal partial least squares discriminant analysis (OPLS-DA). Eighteen compounds were selected as candidate aroma compounds based on GC-O analysis and OAV calculations. In addition, 26 compounds were screened as crucial aroma compounds based on SCA. Finally, 19 compounds were evaluated as key aroma compounds by the comprehensive evaluation of VIP, OAV, and SCA. Terpenoids are the main active compounds that contribute to the floral odor of Congou black tea, whereas aldehydes are the key compounds for the sweet odor. CONCLUSION: The proposed method can effectively screen the aroma-active compounds and can be used for comprehensive quality control of products. © 2022 Society of Chemical Industry.


Asunto(s)
Camellia sinensis , Compuestos Orgánicos Volátiles , Camellia sinensis/química , Quimiometría , Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Olfatometría/métodos , Té/química , Compuestos Orgánicos Volátiles/química
8.
Molecules ; 26(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34299529

RESUMEN

Aroma deterioration is one of the biggest problems in processing tea beverages. The aroma of tea infusion deteriorates fast during heat sterilization and the presence of ferrous ion (Fe2+) aggravates it. The underlying mechanism remains unveiled. In this study, Fe2+ was verified to deteriorate the aroma quality of green tea infusion with heat treatment. Catechins were necessary for Fe2+-mediated aroma deterioration. By enhancing the degradation of catechins, Fe2+ dramatically increased the production of hydrogen peroxide (H2O2). Fe2+ and H2O2 together exacerbated the aroma of green tea infusion with heat treatment. GC-MS analysis revealed that the presence of Fe2+ enhanced the loss of green/grassy volatiles and promoted the formation of new volatiles with diversified aroma characteristics, resulting in a dull scent of green tea infusion. Our results revealed how Fe2+ induced aroma deterioration of green tea infusion with heat treatment and could help guide tea producers in attenuating the aroma deterioration of tea infusion during processing.


Asunto(s)
Compuestos Ferrosos/análisis , Odorantes/análisis , Té/química , Catequina/química , Cationes Bivalentes/análisis , Calor , Hierro/análisis , Esterilización
9.
J Sci Food Agric ; 100(15): 5466-5475, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32564366

RESUMEN

BACKGROUND: The gut microbiota plays important roles in physiological and pathological processes of the host. The effect of black tea on the gut microbiota of healthy individuals remains unclear. RESULTS: Healthy Sprague-Dawley (SD) rats were given black tea for 4 weeks, and cecum content, serum, intestinal, and hepatic samples were collected. The results showed that black tea increased α-diversity and modulated ß-diversity of the gut microbiota. Additionally, black tea enriched several short-chain fatty acid (SCFA) producers but suppressed genus Lactobacillus. Further tests revealed that the enrichment of SCFA producers was associated with a decrease in the oxidative stress of cecum content caused by black tea, and related to increased luminal butyric acid levels and enhanced intestinal barrier function. The suppression of genus Lactobacillus was related to the increase in luminal total bile acids caused by black tea. In vitro tests showed that bile acids rather than black tea directly inhibited Lactobacillus strains. The reduction in genus Lactobacillus did not affect the effects of black tea on intestinal barrier function and lipid levels. CONCLUSION: Our results imply that the effects of black tea on gut microbiota in healthy individuals are complex and provide a new perspective on the associations among black tea, gut microbiota, and health. © 2020 Society of Chemical Industry.


Asunto(s)
Bacterias/metabolismo , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Lactobacillus/crecimiento & desarrollo , Té/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Ciego/microbiología , Filogenia , Ratas , Ratas Sprague-Dawley
10.
J Sci Food Agric ; 100(1): 225-234, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31512247

RESUMEN

BACKGROUND: Metabolic syndrome, a group of factors that increase the risk of health problems, is becoming increasingly common. Strategies to prevent metabolic syndrome have received substantial attention. Black tea consumption and selenium (Se) intake have been reported to be associated negatively with the prevalence of metabolic syndrome. We therefore sought to investigate whether Se-rich black tea might have a stronger effect than Se-deficient black tea in the prevention of metabolic syndrome. RESULTS: Sprague-Dawley rats were divided into four groups and fed a normal rodent diet, high-fat diet, high-fat diet containing 3% Se-rich black tea, or a high-fat diet containing 3% Se-deficient black tea for 4 weeks. Blood and tissue samples were tested at the end of the experiment. The results suggested that both types of black tea ameliorated high-fat diet-induced body-weight gain, lowered serum triglycerides and attenuated intestinal barrier dysfunction. Selenium-rich black tea showed stronger activity in decreasing fasting serum glucose and increasing insulin sensitivity, as well as stronger hepatoprotection, owing to higher total antioxidant capacity and activated hepatic antioxidant enzymes. However, it did not exhibit better effects in preventing fat accumulation. The different effects of Se-rich and Se-deficient black tea on the gut microbiota might have been partially responsible for the results. CONCLUSION: Compared with Se-deficient black tea, Se-rich black tea displayed stronger activity in preventing high-fat diet-induced hyperglycemia and liver damage but was not better at preventing fat accumulation and attenuating dysbiosis. More experiments are needed to understand the underlying mechanisms further. © 2019 Society of Chemical Industry.


Asunto(s)
Camellia sinensis/química , Síndrome Metabólico/prevención & control , Selenio/análisis , Té/metabolismo , Animales , Glucemia/metabolismo , Camellia sinensis/metabolismo , Dieta Alta en Grasa/efectos adversos , Ayuno , Humanos , Resistencia a la Insulina , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Ratas , Ratas Sprague-Dawley , Selenio/metabolismo , Té/química
12.
Molecules ; 24(4)2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30769778

RESUMEN

Theaflavin-3,3'-digallate (TF3) is a unique polyphenol in black tea. Epidemiological studies have proved that black tea consumption decreases the incidence rate of ovarian cancer. Our former research demonstrated that TF3 inhibited human ovarian cancer cells. Nevertheless, the roles of checkpoint kinase 2 (Chk2) and p27 kip1 (p27) in TF3-mediated inhibition of human ovarian cancer cells have not yet been investigated. In the current study, TF3 enhanced the phosphorylation of Chk2 to modulate the ratio of pro/anti-apoptotic Bcl-2 family proteins to initiate intrinsic apoptosis in a p53-independent manner and increased the expression of death receptors to activate extrinsic apoptosis in OVCAR-3 human ovarian carcinoma cells. In addition, TF3 up-regulated the expression of p27 to induce G0/G1 cell cycle arrest in OVCAR-3 cells. Our study indicated that Chk2 and p27 were vital anticancer targets of TF3 and provided more evidence that TF3 might be a potent agent to be applied as adjuvant treatment for ovarian cancer.


Asunto(s)
Biflavonoides/farmacología , Carcinoma/tratamiento farmacológico , Catequina/análogos & derivados , Quinasa de Punto de Control 2/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Neoplasias Ováricas/tratamiento farmacológico , Antioxidantes/química , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Biflavonoides/química , Camellia sinensis/química , Carcinoma/genética , Carcinoma/patología , Catequina/química , Catequina/farmacología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal/efectos de los fármacos , Té/química , Proteína p53 Supresora de Tumor/genética
13.
Molecules ; 24(2)2019 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-30642065

RESUMEN

Castanopsis lamontii is traditionally used to prevent inflammatory diseases such as periodontitis and pharyngitis by residents in southwest China. However, little scientific evidence has been found to support this. In this research, the antibacterial activities of Castanopsis lamontii water extract (CLE) were assessed using the micro-dilution method. The anti-inflammatory and antioxidant activities of CLE were investigated in RAW264.7 cells. Key bioactive compounds in CLE were also explored. Results showed that CLE was capable of inhibiting the periodontitis pathogen Porphyromonas gingivalis and the pharyngitis pathogen ß-hemolytic Streptococcus. It suppressed lipopolysaccharide-induced inflammation in RAW 264.7 cells via inactivating the TLR4/NF-κB pathway. Besides, it reduced oxidative stress-induced cell injury via scavenging reactive oxygen species. Chemical composition analysis revealed that CLE was rich in epicatechin and procyanidin B2. Further studies confirmed that epicatechin predominantly contributed to the antibacterial activities of CLE, while procyanidin B2 was mainly responsible for the anti-inflammatory activities of CLE. Both compounds contributed to the antioxidant activities of CLE. Acute oral toxicity tests proved that CLE was practically non-toxic. These results provide experimental evidences of the health-beneficial effects of CLE and may help promote the application of CLE in the food and health industries.


Asunto(s)
Fagaceae/química , Inflamación/etiología , Inflamación/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Femenino , Inflamación/patología , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo
14.
Cell Physiol Biochem ; 49(1): 306-321, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30138931

RESUMEN

BACKGROUND/AIMS: To identify new treatment strategies for gastric cancer and to elucidate the mechanism underlying its pathophysiology, we transfected sh-MARCH8 into the human gastric cancer cell lines MKN-45 and AGS to investigate the roles of MARCH8 in gastric cancer. METHODS: We used genetic engineering to construct the sh-MARCH8 interference plasmid and transfected it into gastric cancer cells. Colony formation assays and cell viability measurements were performed to detect the viability and proliferation of cancer cells. Wound healing assays were performed to estimate the migration and proliferation rates of the cells. Cell invasion assays were used to estimate the invasive abilities of the cells. Cell apoptosis analysis was performed by using flowing cytometry. Western blot analysis was performed to estimate the expression levels of proteins. Statistical analysis was performed using the SPSS 18.0 software. Student's t-test was used to determine the significance of all pairwise comparisons of interest. RESULTS: We observed that the transfection of sh-MARCH8 inhibited the survival and proliferation of MKN-45 and AGS cells. The migration and invasion of the MKN-45 and AGS cells were significantly decreased, and apoptosis was induced in comparison with the control cells. These results were further confirmed by data showing that sh-MARCH8 increased the BAX/BCL2 ratio in MKN-45 and AGS cells. We also observed that sh-MARCH8 inactivated the PI3K and ß-catenin stat3 signaling pathways by changing protein expression levels or the phosphorylation of related proteins. CONCLUSION: These data suggested that sh-March8 reduced viability and induced apoptosis of the MKN-45 and AGS cells through the PI3K and ß-catenin stat3 signaling pathways. Taken together, our data revealed that transfection of sh-MARCH8 into the MKN-45 and AGS gastric cancer cell lines inhibited their growth, and this approach may be useful as a novel strategy for gastric cancer therapy.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , ARN Interferente Pequeño/metabolismo , Neoplasias Gástricas/patología , Ubiquitina-Proteína Ligasas/metabolismo , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidad , Tasa de Supervivencia , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Proteína X Asociada a bcl-2/metabolismo , beta Catenina/metabolismo
15.
Molecules ; 23(5)2018 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-29734760

RESUMEN

Kaempferol is a widely distributed dietary flavonoid. Epidemiological studies have demonstrated kaempferol consumption lowers the risk of ovarian cancer. Our previous research proved that kaempferol suppresses human ovarian cancer cells by inhibiting tumor angiogenesis. However, the effects of kaempferol on the cell cycle and extrinsic apoptosis of ovarian cancer cells have not yet been studied. In the present study, we demonstrated that kaempferol induced G2/M cell cycle arrest via the Chk2/Cdc25C/Cdc2 pathway and Chk2/p21/Cdc2 pathway in human ovarian cancer A2780/CP70 cells. Chk2 was not responsible for kaempferol-induced apoptosis and up-regulation of p53. Kaempferol stimulated extrinsic apoptosis via death receptors/FADD/Caspase-8 pathway. Our study suggested that Chk2 and death receptors played important roles in the anticancer activity of kaempferol in A2780/CP70 cells. These findings provide more evidence of the anti-ovarian cancer properties of kaempferol and suggest that kaempferol could be a potential candidate for ovarian cancer adjuvant therapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Quinasa de Punto de Control 2/genética , Células Epiteliales/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Quempferoles/farmacología , Receptores de Muerte Celular/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Línea Celular Tumoral , Quinasa de Punto de Control 2/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Humanos , Ovario/efectos de los fármacos , Ovario/metabolismo , Ovario/patología , Receptores de Muerte Celular/metabolismo , Transducción de Señal , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
16.
J Food Sci Technol ; 55(3): 1185-1195, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29487461

RESUMEN

Flavor characteristics and chemical compositions of Tieguanyin oolong tea processed using different semi-fermentation times were investigated. Six flavor attributes of the teas, namely, astringency, bitterness, umami, sweet aftertaste, floral flavor, and green fruity flavor, were analysed. With extended semi-fermentation time, the taste intensity of sweet aftertaste increased, and the aroma intensity of floral and green fruity flavors increased, while the intensities of astringency, bitterness, and umami showed no clear trend. With increasing semi-fermentation time, the concentrations of gallated catechins, myricetin-rhamnose, quercetin-rutinoside, myricetin, and theanine greatly decreased, while those of total theaflavins, vitexin-rhamnose, kaempferol-galactose, kaempferol-rutinoside, vitexin, quercetin, and kaempferol increased significantly. The intensity of bitter taste was positively correlated with the concentrations of total catechins and gallated catechins. The intensity of astringent taste strongly correlated with the flavonoid concentrations, and that of sweet aftertaste positively correlated with the concentrations of (-)-epigallocatechin and (-)-epicatechin. However, dose-over-threshold analysis revealed that catechins, theaflavin, flavonol glycosides, and caffeine are the main taste-active compounds contributing to the taste of Tieguanyin oolong tea. The concentrations of total volatiles and most of the esters increased markedly with the semi-fermentation time, while the concentrations of low aldehydes showed a significant decrease. The flavor index was consistent with the intensity of floral aroma, increasing from 0.59 (12 h) to 0.84 (24 h) and then decreasing to 0.63 (32 h). Results of this work suggest that the flavor change is mainly due to the variation of taste-active and aroma-active compounds in oolong tea.

17.
J Food Sci Technol ; 54(12): 3908-3916, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29085133

RESUMEN

Fresh tea leaves were crushed into juice and then fermented (oxidation) to obtain fermented black tea juice, which can be used to prepare black tea beverage. The effects of addition of oolong tea infusion or tossing of tea leaves on the sensory quality and theaflavins (TFs) concentration of fermented black tea juice were investigated. The results showed that both addition of tea infusion and tossing of fresh tea leaves increased the TFs/thearubigins (TRs) ratio and improved the sensory quality of fermented black tea juice. The TFs/TRs ratio was found to be significantly correlated with the scores for flavor (r = 0.98), mouth feel (r = 0.94), and overall acceptability (r = 0.91) of the fermented black tea juices from different processes. This result suggested that a relatively high concentration of catechins and stepwise enzymatic oxidation were the crucial factors that increased the TFs/TRs ratio and improved the sensory quality. The combination of adding tea infusion and tossing fresh tea leaves greatly improved the quality of the fermented black tea juice by markedly increasing the TFs/TRs ratio (87%). Results of the present study provided useful information for improving the quality of fermented black tea juice.

18.
Tumour Biol ; 37(5): 6801-12, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26662309

RESUMEN

Accumulation of data indicates that misregulated long noncoding RNAs (lncRNAs) are implicated in cancer tumorigenesis and progression and might be served as diagnosis and prognosis biomarker or potential therapeutic targets. Identification of cancer-associated lncRNAs and investigation of their biological functions and molecular mechanisms are significant for understanding the development and progression of cancer. In this study, we identified a novel lncRNA SNHG15, whose expression was upregulated in tumor tissues in 106 patients with gastric cancer (GC) compared with those in the adjacent normal tissues (P < 0.001). Furthermore, increased SNHG15 expression was positively correlated with invasion depth (P < 0.001), advanced tumor node metastasis (TNM) stage (P = 0.001), and lymph node metastasis (P = 0.019). SNHG15 levels were robust in differentiating GC tissues from controls (area under the curve (AUC) = 0.722; 95 % confidence interval (CI) = 0.657-0.782, P < 0.01). Kaplan-Meier analysis demonstrated that elevated SNHG15 expression contributed to poor overall survival (P < 0.01) and disease-free survival (P < 0.01) of patients. A multivariate survival analysis also indicated that SNHG15 could be an independent prognostic marker. Furthermore, knockdown of SNHG15 expression by siRNA could inhibit cell proliferation and invasion and induce apoptosis, while ectopic expression of SNHG15 promoted cell proliferation and invasion in GC cells partly via regulating MMP2 and MMP9 protein expression. Our findings present that elevated lncRNA SNHG15 could be identified as a poor prognostic biomarker in GC and regulate cell invasion.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , ARN Largo no Codificante/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Adulto , Anciano , Animales , Apoptosis/genética , Biomarcadores de Tumor , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Clasificación del Tumor , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Curva ROC , Neoplasias Gástricas/mortalidad , Carga Tumoral , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Vis Exp ; (209)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39141539

RESUMEN

Matcha, as a healthy food additive, has been widely utilized in traditional foods such as noodles, cookies, and bread. However, there are several challenges that must be addressed in the quality of matcha-incorporated foods, with the most significant being the prevention of matcha discoloration. In this study, we introduce a novel approach involving the incorporation of matcha with whey protein (0.08 g/mL) and carboxymethyl chitosan (0.04 g/mL), accompanied by microwave treatment at 700 W for 60 s of wheat flour to produce color-stable matcha fresh noodles. All steps involved in the production process of matcha fresh noodles are presented in the article, including matcha embedding treatment, microwave treatment of wheat flour, kneading the dough, leaving to prove, dividing the dough, rolling out the dough and slicing the sheets by noodle press. The findings revealed a 72.13% reduction in discoloration of fresh matcha noodles following embedding and microwave treatment, compared to untreated fresh matcha noodles. Moreover, the combined process did not have any detrimental impact on the sensory attributes of matcha noodles, including their aroma and taste. Therefore, the novel method proposed in this study holds significant potential for enhancing the color stability of fresh matcha noodles during preparation.


Asunto(s)
Manipulación de Alimentos , Microondas , Manipulación de Alimentos/métodos , Color , Harina , Proteína de Suero de Leche/química , Aditivos Alimentarios/química , Triticum/química , Quitosano/química
20.
Front Public Health ; 12: 1351395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605876

RESUMEN

An aging population is one of the main features of China's current population structure, and it is a key area that needs attention to achieve high-quality population development. Because of its unique geographical environment, economic conditions, and sociocultural background, the study of population aging in the karst region of southwest China is particularly important. However, there is a lack of research exploring the regional differentiation of population aging and its influencing factors in the karst regions of southwest China. In light of this, we chose Anshun City, located in Guizhou Province's southwest area, as the case study area. We used the Lorenz curve and spatial autocorrelation to study the differences in the spatial distribution pattern of population aging and introduced multi-scale geographical weighted regression to explore its influencing factors. The results show that Anshun City's older people population proportion (OPP) is generally high with more than 7% of the older people there, making it part of an aging society. The OPP appeared high in the east and low in the west in spatial distribution; the older people population density (OPD) revealed a gradually increasing trend from south to north. At the township scale, both the OPP and the OPD showed significant spatial positive correlation, and the spatial agglomeration characteristics were obvious. OPD and OPP have a positive spatial correlation at the global level, and townships with similar OPP or OPD were spatially adjacent. The spatial distribution characteristics of population aging are the consequence of complex contributions such as natural, social, economic, and karst factors. Further, the spatial distribution pattern of aging is determined by a variety of influencing factors, which have different directions and intensities. Therefore, it is necessary to formulate and implement corresponding policies and strategies to deal with the aging problem in the future.


Asunto(s)
Envejecimiento , Ambiente , Humanos , Anciano , China , Ciudades , Geografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA