RESUMEN
Recent compelling results indicate possible links between neurotransmitters, intestinal mucosal IgA+ B cell responses, and immunoglobulin A nephropathy (IgAN) pathogenesis. Here, we demonstrated that γ-amino butyric acid (GABA) transporter-2 (GAT-2) deficiency induces intestinal germinal center (GC) B cell differentiation and worsens the symptoms of IgAN in a mouse model. Mechanistically, GAT-2 deficiency enhances GC B cell differentiation through activation of GABA-mammalian target of rapamycin complex 1 (mTORC1) signaling. In addition, IgAN patients have lower GAT-2 expression but higher activation of mTORC1 in blood B cells, and both are correlated with kidney function in IgAN patients. Collectively, this study describes GABA signaling-mediated intestinal mucosal immunity as a previously unstudied pathogenesis mechanism of IgAN and challenges the current paradigms of IgAN.
Asunto(s)
Glomerulonefritis por IGA , Ratones , Animales , Ácido gamma-Aminobutírico/metabolismo , Inmunoglobulina A/metabolismo , Centro Germinal/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Diferenciación Celular , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , MamíferosRESUMEN
Ningxiang (NX) pig has been recognized as one of the most famous Chinese indigenous breeds due to its characteristics in stress resistance. However, intestinal microbial feature and gene profiling in NX piglets have not been studied. Here, we compared the intestinal microbiome and transcriptome between NX and Duroc × Landrace × Large white (DLY) piglets and found the high enrichment of several colonic Bacteroides, Prevotella and Clostridium species in NX piglets. Further functional analyses revealed their predominant function in methane, glycolysis and gluconeogenesis metabolism. Our mRNA-sequencing data unraveled the distinct colonic gene expression between these two breeds. In particular, we showed that the improved intestinal function in NX piglets may be determined by enhanced intestinal barrier gene expression and varied immune gene expression through modulating the composition of the gut microbes. Together, our study revealed the intestinal characteristics of NX piglets, providing their potential application in improving breeding strategies and developing dietary interventions.
Asunto(s)
Microbioma Gastrointestinal , Transcriptoma , Animales , PorcinosRESUMEN
Both controllable regulation of the conformational structure of a polypeptide and specific recognition of an amino acid are still arduous challenges. Here, a novel dual-mode (electrochemical and colorimetric) biosensor was built for arginine (Arg) recognition based on a conformation switch, utilizing controllable and synergistic self-assembly of a ferrocene-grafted hexadecapeptide (P16Fc) with gold nanoparticles (AuNPs). Benefiting from the flexibility and unique topological structure of P16Fc formed nanospheres, the assembly and disassembly can undergo a conformation transition induced by Arg through controlling the distance and number of Fc detached from the gold surface, producing on-off electrical signals. Also, they can induce aggregation and dispersion of AuNPs in solution, causing a color change. The mechanism of Arg recognition with polypeptide conformation regulation was well explored by combining microstructure characterizations with molecular mechanics calculations. The electrochemical and colorimetric assays for Arg were successfully established in sensitive and selective manner, not only obtaining a very low detection limit, but also effectively eliminating the interference from other amino acids and overcoming the limitation of AuNP aggregation. Notably, the conformational change-based assay with the peptide regulated by the target will make a powerful tool for the amino acid biosensing and health diagnosis.
Asunto(s)
Arginina , Técnicas Electroquímicas , Compuestos Ferrosos , Oro , Nanopartículas del Metal , Metalocenos , Péptidos , Arginina/química , Compuestos Ferrosos/química , Metalocenos/química , Oro/química , Nanopartículas del Metal/química , Péptidos/química , Técnicas Biosensibles/métodos , Colorimetría/métodos , Conformación Proteica , Límite de DetecciónRESUMEN
New soil organic carbon (SOC) formation in cropland from straw/stover or manure input is a vital source of SOC for climate change mitigation. However, location and variations in the efficiency, specifically the ratio of new SOC formation to organic C input (NCE), remain unquantified globally. In this study, the spatial variability of cropland NCE from straw/stover or manure input and explanatory factors were determined by analyzing 897 pairs of long-term field measurements from 404 globally distributed sites and by mapping grid-level cropland NCEs. The global NCE for paddy and upland averaged 13.8% (8.7%-25.1%, 5th-95th percentile) and 10.9% (6.8%-17.3%), respectively. The initial SOC and the clay content of soil, rather than temperature, were the most important factors regulating NCE. A parabola with an apex at approximately 17 g kg-1 between the initial SOC and NCE was resolved, and a positive correlation between soil clay content and NCE was observed. High-resolution mapping of the global NCE derived from manure/straw and insight into NCE dynamics provide a benchmark for diagnosing cropland soil C dynamics under climate change and identifying priority regions and actions for C management.
Asunto(s)
Carbono , Estiércol , Suelo , Estiércol/análisis , Suelo/química , Carbono/análisis , Agricultura/métodos , Cambio Climático , Productos Agrícolas/crecimiento & desarrolloRESUMEN
BACKGROUND: Abnormal placental angiogenesis is an important cause of fetal intrauterine growth restriction (IUGR), but its underlying mechanisms and therapies remain unclear. Adenosine and its mediated signaling has been reported to be associated with the development of angiogenesis. However, whether the adenosine-related signaling plays a role in modulating angiogenesis in placenta and the IUGR pregnancy outcomes remains unclear. METHODS: The angiogenesis and adenosine signaling expressions in normal and IUGR placentas were detected in different species. And the role of adenosine in regulating IUGR pregnancy outcomes was evaluated using diet-induced IUGR mouse model. Molecular mechanisms underlying adenosine-induced angiogenesis were investigated by in vitro angiogenesis assays and in vivo Matrigel plug assays. RESULTS: Here, we demonstrated poor angiogenesis and low adenosine concentration and downregulated expression of its receptor A2a (ADORA2A [adenosine A2a receptor]) in IUGR placenta. Additionally, the beneficial effects of adenosine in improving IUGR pregnancy outcomes were revealed in a diet-induced IUGR mouse model. Moreover, adenosine was found to effectively improve adenosine signaling and angiogenesis in IUGR mice placenta. Mechanistically, by using angiogenesis assays in vitro and in vivo, adenosine was shown to activate ADORA2A to promote the phosphorylation of Stat3 (signal transducer and activator of transcription 3) and Akt (protein kinase B), resulting in increased Ang (angiogenin)-dependent angiogenesis. CONCLUSIONS: Collectively, this study uncovers an unexpected mechanism of promoting placental angiogenesis by adenosine-ADORA2A signaling and advances the translation of this signaling as a prognostic indicator and therapeutic target in IUGR treatment.
Asunto(s)
Placenta , Proteínas Proto-Oncogénicas c-akt , Animales , Femenino , Humanos , Ratones , Embarazo , Retardo del Crecimiento Fetal/inducido químicamente , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Adenosina A2A/metabolismo , Factor de Transcripción STAT3/metabolismoRESUMEN
Sustainably feeding a growing population is a grand challenge, and one that is particularly difficult in regions that are dominated by smallholder farming. Despite local successes, mobilizing vast smallholder communities with science- and evidence-based management practices to simultaneously address production and pollution problems has been infeasible. Here we report the outcome of concerted efforts in engaging millions of Chinese smallholder farmers to adopt enhanced management practices for greater yield and environmental performance. First, we conducted field trials across China's major agroecological zones to develop locally applicable recommendations using a comprehensive decision-support program. Engaging farmers to adopt those recommendations involved the collaboration of a core network of 1,152 researchers with numerous extension agents and agribusiness personnel. From 2005 to 2015, about 20.9 million farmers in 452 counties adopted enhanced management practices in fields with a total of 37.7 million cumulative hectares over the years. Average yields (maize, rice and wheat) increased by 10.8-11.5%, generating a net grain output of 33 million tonnes (Mt). At the same time, application of nitrogen decreased by 14.7-18.1%, saving 1.2 Mt of nitrogen fertilizers. The increased grain output and decreased nitrogen fertilizer use were equivalent to US$12.2 billion. Estimated reactive nitrogen losses averaged 4.5-4.7 kg nitrogen per Megagram (Mg) with the intervention compared to 6.0-6.4 kg nitrogen per Mg without. Greenhouse gas emissions were 328 kg, 812 kg and 434 kg CO2 equivalent per Mg of maize, rice and wheat produced, respectively, compared to 422 kg, 941 kg and 549 kg CO2 equivalent per Mg without the intervention. On the basis of a large-scale survey (8.6 million farmer participants) and scenario analyses, we further demonstrate the potential impacts of implementing the enhanced management practices on China's food security and sustainability outlook.
Asunto(s)
Agricultura/métodos , Conservación de los Recursos Naturales , Productos Agrícolas/crecimiento & desarrollo , Eficiencia Organizacional , Agricultores , China , Técnicas de Apoyo para la Decisión , Grano Comestible/crecimiento & desarrollo , Política Ambiental , Fertilizantes/estadística & datos numéricos , Abastecimiento de Alimentos/métodos , Efecto Invernadero , Nitrógeno/metabolismo , Oryza/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Zea mays/crecimiento & desarrolloRESUMEN
Hundreds of millions of smallholders in emerging countries substantially overuse nitrogen (N) fertilizers, driving local environmental pollution and global climate change. Despite local demonstration-scale successes, widespread mobilization of smallholders to adopt precise N management practices remains a challenge, largely due to associated high costs and complicated sampling and calculations. Here, we propose a long-term steady-state N balance (SSNB) approach without these complications that is suitable for sustainable smallholder farming. The hypothesis underpinning the concept of SSNB is that an intensively cultivated soil-crop system with excessive N inputs and high N losses can be transformed into a steady-state system with minimal losses while maintaining high yields. Based on SSNB, we estimate the optimized N application range across 3,824 crop counties for the three staple crops in China. We evaluated SSNB first in ca. 18,000 researcher-managed on-farm trials followed by testing in on-farm trials with 13,760 smallholders who applied SSNB-optimized N rates under the guidance of local extension staff. Results showed that SSNB could significantly reduce N fertilizer use by 21 to 28% while maintaining or increasing yields by 6 to 7%, compared to current smallholder practices. The SSNB approach could become an effective tool contributing to the global N sustainability of smallholder agriculture.
RESUMEN
SNX29 is a potential functional gene associated with meat production traits. Previous studies have shown that SNX29 copy number variation (CNV) could be implicated with phenotype in goats. However, in Diannan small-ear (DSE) pigs, the genetic impact of SNX29 CNV on growth traits remains unclear. Therefore, this study investigated the associations between SNX29 CNVs (CNV10810 and CNV10811) and growth traits in 415 DSE pigs. The results revealed that the CNV10810 mutation was significantly associated with backfat thickness in DSE pigs at 12 and 15 months old (P < 0.05), while the CNV10811 mutation had significant effects on various growth traits at 6 and 12 months old, particularly for body weight, body height, back height and backfat thickness (P < 0.05 or P < 0.001). In conclusion, our results confirm that SNX29 CNV plays a role in regulating growth and development in pigs, thus suggesting its potential application for pig breeding programmes.
Asunto(s)
Variaciones en el Número de Copia de ADN , Nexinas de Clasificación , Porcinos/genética , Animales , Variaciones en el Número de Copia de ADN/genética , Nexinas de Clasificación/genética , Fenotipo , Peso Corporal/genética , Dosificación de GenRESUMEN
Cadmium (Cd) is a heavy metal element with a wide range of hazards and severe biotoxicity. Since Cd can be easily accumulated in the edible parts of plants, the exposure of humans to Cd is mainly through the intake of Cd-contaminated food. However, the intestinal responses to Cd exposure are not completely characterized. Herein, we simulated laboratory and environmental Cd exposure by feeding the piglets with CdCl2-added rice and Cd-contaminated rice (Cdcr) contained diet, as piglets show anatomical and physiological similarities to humans. Subsequent analysis of the metal element concentrations showed that exposure to the two types of Cd significantly increased Cd levels in piglets. After verifying the expression of major Cd transporters by Western blots, multi-omics further expanded the possible transporters of Cd and found Cd exposure causes wide alterations in the metabolism of piglets. Of significance, CdCl2 and Cdcr exhibited different body distribution and metabolic rewiring, and Cdcr had stronger carcinogenic and diabetes-inducing potential. Together, our results indicate that CdCl2 had a significant difference compared with Cdcr, which has important implications for a more intense study of Cd toxicity.
Asunto(s)
Cadmio , Proteómica , Animales , Porcinos , Cadmio/toxicidad , Proteómica/métodos , Transcriptoma/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/metabolismo , Perfilación de la Expresión Génica , Oryza/metabolismo , Oryza/genéticaRESUMEN
Dietary methionine restriction (MetR) offers an integrated set of beneficial health effects, including delaying aging, extending health span, preventing fat accumulation, and reducing oxidative stress. This study aimed to investigate whether MetR exerts entero-protective effects by modulating intestinal flora, and the effect of MetR on plasma metabolites in rats. Rats were fed diets containing 0.86% methionine (CON group) and 0.17% methionine (MetR group) for 6 weeks. Several indicators of inflammation, gut microbiota, plasma metabolites, and intestinal barrier function were measured. 16S rRNA gene sequencing was used to analyze the cecal microbiota. The MetR diet reduced the plasma and colonic inflammatory factor levels. The MetR diet significantly improved intestinal barrier function by increasing the mRNA expression of tight junction proteins, such as zonula occludens (ZO)-1, claudin-3, and claudin-5. In addition, MetR significantly increased the levels of short-chain fatty acids (SCFAs) by increasing the abundance of SCFAs-producing Erysipclotxichaceae and Clostridium_sensu_stricto_1 and decreasing the abundance of pro-inflammatory bacteria Proteobacteria and Escherichia-Shigella. Furthermore, MetR reduced the plasma levels of taurochenodeoxycholate-7-sulfate, taurocholic acid, and tauro-ursodeoxycholic acid. Correlation analysis identified that colonic acetate, total colonic SCFAs, 8-acetylegelolide, collettiside I, 6-methyladenine, and cholic acid glucuronide showed a significant positive correlation with Clostridium_sensu_stricto_1 abundance but a significant negative correlation with Escherichia-Shigella and Enterococcus abundance. MetR improved gut health and altered the plasma metabolic profile by regulating the gut microbiota in rats.
Asunto(s)
Microbioma Gastrointestinal , Metionina , Animales , Ratas , ARN Ribosómico 16S/genética , Racemetionina , MetabolómicaRESUMEN
Anthropogenic reactive nitrogen (Nr) loss has been a critical environmental issue. However, due to the limitations of data availability and appropriate methods, the estimation of Nr loss from rice paddies and associated spatial patterns at a fine scale remain unclear. Here, we estimated the background Nr loss (BNL, i.e., Nr loss from soils without fertilization) and the loss factors (the percentage of Nr loss from synthetic fertilizer, LFs) for five loss pathways in rice paddies and identified the national 1 × 1 km spatial variations using data-driven models combined with multi-source data. Based on established machine learning models, an average of 23.4% (15.3-34.6%, 95% confidence interval) of the synthetic N fertilizer was lost to the environment, in the forms of NH3 (17.4%, 10.9-26.7%), N2O (0.5%, 0.3-0.8%), NO (0.2%, 0.1-0.4%), N leaching (3.1%, 0.8-5.7%), and runoff (2.3%, 0.6-4.5%). The total Nr loss from Chinese rice paddies was estimated to be 1.92 ± 0.52 Tg N yr-1 in 2021, in which synthetic fertilizer-induced Nr loss accounted for 69% and BNL accounted for the other 31%. The hotspots of Nr loss were concentrated in the middle and lower regions of the Yangtze River, an area with extensive rice cultivation. This study improved the estimation accuracy of Nr losses and identified the hotspots, which could provide updated insights for policymakers to set the priorities and strategies for Nr loss mitigation.
Asunto(s)
Fertilizantes , Nitrógeno , Oryza , Suelo , Agricultura , China , Fertilizantes/análisis , Nitrógeno/análisis , Suelo/químicaRESUMEN
BACKGROUND: Diquat is a common environmental pollutant, which can cause oxidative stress in humans and animals. Diquat exposure causes growth retardation and intestinal damage. Therefore, this study was performed to investigate the effects of melatonin on diquat-challenged piglets. RESULTS: Dietary supplementation with 2 mg kg-1 melatonin significantly increased the average daily gain and feed conversion rate in piglets. Melatonin increased antioxidant capacity, and improved intestinal epithelial barrier function of duodenum and jejunum in piglets. Moreover, melatonin was found to regulated the expression of immune and antioxidant-related genes. Melatonin also alleviated diquat-induced growth retardation and anorexia in diquat-challenged piglets. It also increased antioxidant capacity, and ameliorated diquat-induced intestinal epithelial barrier injury. Melatonin also regulated the expression of MnSOD and immuner-elated genes in intestinal. CONCLUSION: Dietary supplementation with 2 mg kg-1 melatonin increased antioxidant capacity to ameliorate diquat-induced oxidative stress, alleviate intestinal epithelial barrier injury, and increase growth performance in weaned piglets. © 2023 Society of Chemical Industry.
Asunto(s)
Antioxidantes , Melatonina , Humanos , Animales , Porcinos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Diquat/efectos adversos , Melatonina/farmacología , Suplementos Dietéticos , Trastornos del CrecimientoRESUMEN
Myostatin (MSTN) is a major gene target for skeletal muscle overgrowth in animals. We hypothesized that deletion of the entire mature peptide encoded by MSTN in pigs would knock out its bioactive form and accordingly stimulate skeletal muscle overgrowth. Thus, we engineered two pairs of single-guide RNAs (sgRNAs) to target exons 1 and 3 of MSTN in primary fetal fibroblasts of Taoyuan black pigs. We found that sgRNAs targeting exon 3, which encodes the mature peptide, had higher biallelic null mutation efficiency than those targeting exon 1. Somatic cell nuclear transfer was conducted using the exon 3 mutation cells as donor cells to generate five cloned MSTN null piglets (MSTN-/-). Growth testing revealed that both the growth rate and average daily weight gain of MST-/- pigs were greater than those of wild-type (MSTN+/+) pigs. Slaughter data demonstrated that the lean ratio of MSTN-/- pigs was 11.3% higher (P < 0.01) while the back-fat thickness was 17.33% lower (P < 0.01) than those of MSTN+/+ pigs. Haematoxylin-eosin staining indicated that the increased leanness of MSTN-/- pigs resulted from muscle fibre hyperplasia rather than hypertrophy.HE staining showed markedly decreased adipocyte size in MSTN-/- pigs. We also critically examined the off-target and random integration by resequencing, which showed that the founder MSTN-/- pigs contained no non-target mutations or exogenous plasmid elements. This study is the first to report the successful knock out of the mature MSTN peptide using dual sgRNA-mediated deletion, leading to the most prominent alteration of meat production traits in pigs published thus far. This new strategy is expected to have a wide impact on genetic improvements in food animals.
Asunto(s)
Miostatina , ARN Guía de Sistemas CRISPR-Cas , Animales , Porcinos , Técnicas de Inactivación de Genes , Miostatina/genética , Hiperplasia/genética , Hiperplasia/patología , Fibras Musculares Esqueléticas , Músculo Esquelético/patología , AdipocitosRESUMEN
Soils are a major source of global nitric oxide (NO) emissions. However, estimates of soil NO emissions have large uncertainties due to limited observations and multifactorial impacts. Here, we mapped global soil NO emissions, integrating 1356 in-situ NO observations from globally distributed sites with high-resolution climate, soil, and management practice data. We then calculated global and national total NO budgets and revealed the contributions of cropland, grassland, and forest to global soil NO emissions at the national level. The results showed that soil NO emissions were explained mainly by N input, water input and soil pH. Total above-soil NO emissions of the three vegetation cover types were 9.4 Tg N year-1 in 2014, including 5.9 Tg N year-1 (1.04, 95% confidence interval [95% CI]: 0.09-1.99 kg N ha-1 year-1 ) emitted from forest, 1.7 Tg N year-1 (0.68, 95% CI: 0.10-1.26 kg N ha-1 year-1 ) from grassland, and 1.8 Tg N year-1 (0.98, 95% CI: 0.42-1.53 kg N ha-1 year-1 ) from cropland. Soil NO emissions in approximately 57% of 213 countries surveyed were dominated by forests. Our results provide updated inventories of global and national soil NO emissions based on robust data-driven models. These estimates are critical to guiding the mitigation of soil NO emissions and can be used in combination with biogeochemical models.
Asunto(s)
Óxido Nítrico , Suelo , Óxido Nitroso/análisis , Bosques , ClimaRESUMEN
BACKGROUND: The amino acid (AA) composition of human milk is used to define the AA requirements of the infant. Thus, it is important that estimates of composition be as complete and accurate as possible. When determining AA composition using standard hydrolysis methods, some AAs are progressively destroyed while others are incompletely released. For accuracy, AA composition needs to be determined using multiple hydrolysis times. The true ileal digestibility of AAs also needs to be taken into consideration. OBJECTIVE: The objective was to bring together AA compositional (determined using multiple hydrolysis intervals) and digestibility data determined using the piglet to give an estimate of the absorbed AA profile of human milk with reference in particular to Asian females. METHODS: Mature milk was collected from Chinese females. AA analysis using multiple hydrolysis intervals and a nonlinear regression model was used to accurately estimate AA composition. Human milk, as well as a protein-free diet, were fed to piglets (n = 6), and ileal digesta were collected (piglet age, 21 d) to determine the true ileal AA digestibility of AAs in human milk. RESULTS: True ileal AA digestibility coefficients ranged from (mean ± standard error of the mean) 0.61 ± 0.081 for tyrosine to 1.01 ± 0.030 for tryptophan, with a digestibility for total nitrogen of 0.90 ± 0.013. Convergence criteria were met for the modeling for each AA, and the model had a level of significance of P < 0.0001 for each AA. The amount of available AAs (total AA content as per the model prediction multiplied by the true ileal AA digestibility coefficient determined in the piglet) are reported. CONCLUSIONS: An estimate of the absorbed AA profile of mature milk collected from Chinese females is provided. For the first time, data is presented for cysteine.
Asunto(s)
Aminoácidos , Leche Humana , Humanos , Animales , Femenino , Porcinos , Adulto Joven , Adulto , Leche Humana/química , Aminoácidos/metabolismo , Digestión , Proteínas en la Dieta/metabolismo , Íleon/metabolismo , China , Alimentación Animal/análisis , Dieta , Fenómenos Fisiológicos Nutricionales de los AnimalesRESUMEN
Dithiocarbamates synthesis is extremely important in plenty of biomedical and agrochemical applications, especially fungicide development, but remains a great challenge. In this work, we have successfully developed a multicomponent reaction protocol to convert H2S into S-alkyl dithiocarbamates under constant current conditions. No additional oxidants nor additional catalysts are required, and due to mild conditions, the reactions display a broad substrate scope, including varieties of thiols or disulfides.
RESUMEN
Enterotoxigenic Escherichia coli (ETEC) is a common diarrheal pathogen in humans and animals. To prevent and treat ETEC induced diarrhea, we synthesized mannan oligosaccharide selenium (MOSS) and studied its beneficial effect on ETEC-induced diarrhea. A total of 32 healthy weaned piglets (6.69 ± 0.01 kg) were randomly divided into four groups: NC group (Basal diet), MOSS group (0.4 mg/kg MOSS supplemented diet), MOET group (0.4 mg/kg MOSS supplemented diet + ETEC treatment), ETEC group (ETEC treatment). NC and ETEC group fed with basal diet, MOSS and MOET group fed with the MOSS supplemented diet. On the 8th and 15th day of the experiment, MOET and ETEC group were gavaged with ETEC, and NC and MOSS group were gavaged with stroke-physiological saline solution. Our data showed that dietary MOSS supplementation increased average daily gain (ADG) and average daily feed intake (ADFI) and significantly decreased diarrhea index and frequency in ETEC-treated piglets. MOSS did not affect the α diversity and ß diversity of ileal microbial community, but it significantly decreased the proportion of lipopolysaccharide biosynthesis in ileal microbial community. MOSS supplementation regulated colonic microbiota community composition, which significantly increased carbohydrate metabolism, and inhibited lipopolysaccharide biosynthesis pathway in colonic microbial community. Moreover, MOSS significantly decreased inflammatory stress, and oxidative stress in ETEC treated piglets. Furthermore, dietary MOSS supplementation significantly decreased intestinal barrier permeability, and alleviated ETEC induced intestinal mucosa barrier irritation. In conclusion, our study showed that dietary MOSS supplementation ameliorated intestinal mucosa barrier, and regulated intestinal microbiota to prevent ETEC induced diarrhea in weaned piglets.
Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Microbioma Gastrointestinal , Selenio , Animales , Diarrea/prevención & control , Diarrea/veterinaria , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Mucosa Intestinal , Lipopolisacáridos , Mananos/farmacología , Mananos/uso terapéutico , Selenio/farmacología , PorcinosRESUMEN
This study investigated whether dietary supplementation with magnolol affects growth performance, anti-inflammatory abilities, serum and muscle amino acid profiles, and metabolisms in growing pigs. A total of 42 seventy-days-old growing barrows (Duroc × Landrace × Yorkshire) were randomly allocated into two dietary groups: Con, control group (basal diet); and Mag, magnolol group (basal diet supplemented with 400 mg/kg of magnolol). The results revealed that dietary supplementation with magnolol had no effect (p > 0.05) on growth performance. However, magnolol supplementation remarkably increased (p < 0.05) the serum content of albumin, total protein, immunoglobulin G, immunoglobulin M, and interleukin-22. In addition, dietary magnolol supplementation altered the amino acid (AA) profiles in serum and dorsal muscle and particularly increased (p < 0.05) the serum content of arginine and muscle glutamate. Simultaneously, the mRNA expression of genes associated with AA transport in jejunum (SLC38A2, SLC1A5, and SLC7A1) and ileum (SLC1A5 and SLC7A1) was higher (p < 0.05) in the Mag group than in the Con group. Additionally, the serum metabolomics analysis showed that the addition of magnolol significantly enhanced (p < 0.05) arginine biosynthesis, as well as D-glutamine and D-glutamate metabolism. Overall, these results suggested that dietary supplementation with magnolol has the potential to improve the accumulation of AAs, protein synthesis, immunity, and body health in growing pigs by increasing intestinal absorption and the transport of AAs.
Asunto(s)
Aminoácidos , Ácido Glutámico , Porcinos , Animales , Homeostasis , Arginina , Sistemas de Transporte de Aminoácidos , Suplementos Dietéticos , Expresión GénicaRESUMEN
RNA N6-methyladenosine (m6A) modification is one of the principal post-transcriptional modifications and plays a dynamic role in testicular development and spermatogenesis. However, the role of m6A in porcine testis is understudied. Here, we performed a comprehensive analysis of the m6A transcriptome-wide profile in Shaziling pig testes at birth, puberty, and maturity. We analyzed the total transcriptome m6A profile and found that the m6A patterns were highly distinct in terms of the modification of the transcriptomes during porcine testis development. We found that key m6A methylated genes (AURKC, OVOL, SOX8, ACVR2A, and SPATA46) were highly enriched during spermatogenesis and identified in spermatogenesis-related KEGG pathways, including Wnt, cAMP, mTOR, AMPK, PI3K-Akt, and spliceosome. Our findings indicated that m6A methylations are involved in the complex yet well-organized post-transcriptional regulation of porcine testicular development and spermatogenesis. We found that the m6A eraser ALKBH5 negatively regulated the proliferation of immature porcine Sertoli cells. Furthermore, we proposed a novel mechanism of m6A modification during testicular development: ALKBH5 regulated the RNA methylation level and gene expression of SOX9 mRNA. In addition to serving as a potential target for improving boar reproduction, our findings contributed to the further understanding of the regulation of m6A modifications in male reproduction.
Asunto(s)
Epigenoma , Transcriptoma , Porcinos , Masculino , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Maduración Sexual , Testículo/metabolismo , ARN/metabolismoRESUMEN
Ningxiang pigs are a renowned indigenous pig breed in China, known for their meat quality, disease resistance, and environmental adaptability. In recent decades, consumer demand for meats from indigenous breeds has grown significantly, fueling the selection and crossbreeding of Ningxiang pigs (NXP). The latter has raised concerns about the conservation and sustainable use of Ningxiang pigs as an important genetic resource. To address these concerns, we conducted a comprehensive genomic study using 2242 geographically identified Ningxiang pigs. The estimated genomic breed composition (GBC) suggested 2077 pigs as purebred Ningxiang pigs based on a ≥94% NXP-GBC cut-off. The remaining 165 pigs were claimed to be crosses, including those between Duroc and Ningxiang pigs and between Ningxiang and Shaziling pigs, and non-Ningxiang pigs. Runs of homozygosity (ROH) were identified in the 2077 purebred Ningxiang pigs. The number and length of ROH varied between individuals, with an average of 32.14 ROH per animal and an average total length of 202.4 Mb per animal. Short ROH (1-5 Mb) was the most abundant, representing 66.5% of all ROH and 32.6% of total ROH coverage. The genomic inbreeding estimate was low (0.089) in purebred Ningxiang pigs compared to imported western pig breeds. Nine ROH islands were identified, pinpointing candidate genes and QTLs associated with economic traits of interest, such as reproduction, carcass and growth traits, lipid metabolism, and fat deposition. Further investigation of these ROH islands and candidate genes is anticipated to better understand the genomics of Ningxiang pigs.