RESUMEN
Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.
Asunto(s)
Tejido Adiposo Pardo , Glucosa , Ratones , Humanos , Animales , Glucosa/metabolismo , Tejido Adiposo Pardo/metabolismo , Acetilación , Tejido Adiposo Blanco/metabolismo , Metabolismo Energético , Obesidad/genética , Obesidad/metabolismo , Termogénesis/genética , Ratones Endogámicos C57BL , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismoRESUMEN
The protumor roles of alternatively activated (M2) tumor-associated macrophages (TAMs) have been well established, and macrophage reprogramming is an important therapeutic goal. However, the mechanisms of TAM polarization remain incompletely understood, and effective strategies for macrophage targeting are lacking. Here, we show that miR-182 in macrophages mediates tumor-induced M2 polarization and can be targeted for therapeutic macrophage reprogramming. Constitutive miR-182 knockout in host mice and conditional knockout in macrophages impair M2-like TAMs and breast tumor development. Targeted depletion of macrophages in mice blocks the effect of miR-182 deficiency in tumor progression while reconstitution of miR-182-expressing macrophages promotes tumor growth. Mechanistically, cancer cells induce miR-182 expression in macrophages by TGFß signaling, and miR-182 directly suppresses TLR4, leading to NFκb inactivation and M2 polarization of TAMs. Importantly, therapeutic delivery of antagomiR-182 with cationized mannan-modified extracellular vesicles effectively targets macrophages, leading to miR-182 inhibition, macrophage reprogramming, and tumor suppression in multiple breast cancer models of mice. Overall, our findings reveal a crucial TGFß/miR-182/TLR4 axis for TAM polarization and provide rationale for RNA-based therapeutics of TAM targeting in cancer.
Asunto(s)
Reprogramación Celular , Neoplasias Mamarias Animales/metabolismo , MicroARNs/metabolismo , ARN Neoplásico/metabolismo , Transducción de Señal , Macrófagos Asociados a Tumores/metabolismo , Animales , Femenino , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Neoplasias Mamarias Animales/genética , Ratones , Ratones Noqueados , MicroARNs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/genética , Receptor Toll-Like 4/biosíntesis , Receptor Toll-Like 4/genética , Factor de Crecimiento Transformador beta/biosíntesis , Factor de Crecimiento Transformador beta/genéticaRESUMEN
A novel antiferroelectric material, PbSnO3 (PSO), was introduced into a resistive random access memory (RRAM) to reveal its resistive switching (RS) properties. It exhibits outstanding electrical performance with a large memory window (>104), narrow switching voltage distribution (±2 V), and low power consumption. Using high-resolution transmission electron microscopy, we observed the antiferroelectric properties and remanent polarization of the PSO thin films. The in-plane shear strains in the monoclinic PSO layer are attributed to oxygen octahedral tilts, resulting in misfit dislocations and grain boundaries at the PSO/SRO interface. Furthermore, the incoherent grain boundaries between the orthorhombic and monoclinic phases are assumed to be the primary paths of Ag+ filaments. Therefore, the RS behavior is primarily dominated by antiferroelectric polarization and defect mechanisms for the PSO structures. The RS behavior of antiferroelectric heterostructures controlled by switching spontaneous polarization and strain, defects, and surface chemistry reactions can facilitate the development of new antiferroelectric device systems.
RESUMEN
Internet gaming disorder (IGD) prompts inquiry into how feedback from prior gaming rounds influences subsequent risk-taking behavior and potential neural mechanisms. Forty-two participants, including 15 with IGD and 27 health controls (HCs), underwent a sequential risk-taking task. Hierarchy Bayesian modeling was adopted to measure risky propensity, behavioral consistence, and affection by emotion ratings from last trial. Concurrent electroencephalogram and functional near-infrared spectroscopy (EEG-fNIRS) recordings were performed to demonstrate when, where and how the previous-round feedback affects the decision making to the next round. We discovered that the IGD illustrated heightened risk-taking propensity as compared to the HCs, indicating by the computational modeling (p = 0.028). EEG results also showed significant time window differences in univariate and multivariate pattern analysis between the IGD and HCs after the loss of the game. Further, reduced brain activation in the prefrontal cortex during the task was detected in IGD as compared to that of the control group. The findings underscore the importance of understanding the aberrant decision-making processes in IGD and suggest potential implications for future interventions and treatments aimed at addressing this behavioral addiction.
Asunto(s)
Toma de Decisiones , Electroencefalografía , Trastorno de Adicción a Internet , Humanos , Masculino , Toma de Decisiones/fisiología , Trastorno de Adicción a Internet/fisiopatología , Trastorno de Adicción a Internet/diagnóstico por imagen , Adulto Joven , Adulto , Femenino , Espectroscopía Infrarroja Corta/métodos , Asunción de Riesgos , Juegos de Video/psicología , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiopatología , Imagen Multimodal , Retroalimentación Psicológica/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatologíaRESUMEN
Metabolomics has emerged as a powerful tool in biomedical research to understand the pathophysiological processes and metabolic biomarkers of diseases. Nevertheless, it is a significant challenge in metabolomics to identify the reliable core metabolites that are closely associated with the occurrence or progression of diseases. Here, we proposed a new research framework by integrating detection-based metabolomics with computational network biology for function-guided and network-based identification of core metabolites, namely, FNICM. The proposed FNICM methodology is successfully utilized to uncover ulcerative colitis (UC)-related core metabolites based on the significantly perturbed metabolic subnetwork. First, seed metabolites were screened out using prior biological knowledge and targeted metabolomics. Second, by leveraging network topology, the perturbations of the detected seed metabolites were propagated to other undetected ones. Ultimately, 35 core metabolites were identified by controllability analysis and were further hierarchized into six levels based on confidence level and their potential significance. The specificity and generalizability of the discovered core metabolites, used as UC's diagnostic markers, were further validated using published data sets of UC patients. More importantly, we demonstrated the broad applicability and practicality of the FNICM framework in different contexts by applying it to multiple clinical data sets, including inflammatory bowel disease, colorectal cancer, and acute coronary syndrome. In addition, FNICM was also demonstrated as a practicality methodology to identify core metabolites correlated with the therapeutic effects of Clematis saponins. Overall, the FNICM methodology is a new framework for identifying reliable core metabolites for disease diagnosis and drug treatment from a systemic and a holistic perspective.
Asunto(s)
Colitis Ulcerosa , Metabolómica , Humanos , Metabolómica/métodos , Biología Computacional/métodos , Colitis Ulcerosa/diagnósticoRESUMEN
The role of peroxiredoxin 1 (PRDX1), a crucial enzyme that reduces reactive oxygen and nitrogen species levels in HepG2 human hepatocellular carcinoma (HCC) cells, in the regulation of HCC cell stemness under oxidative stress and the underlying mechanisms remain largely unexplored. Here, we investigated the therapeutic potential of non-thermal plasma in targeting cancer stem cells (CSCs) in HCC, focusing on the mechanisms of resistance to oxidative stress and the role of PRDX1. By simulating oxidative stress conditions using the plasma-activated medium, we found that a reduction in PRDX1 levels resulted in a considerable increase in HepG2 cell apoptosis, suggesting that PRDX1 plays a key role in oxidative stress defense mechanisms in CSCs. Furthermore, we found that HepG2 cells had higher spheroid formation capability and increased levels of stem cell markers (CD133, c-Myc, and OCT-4), indicating strong stemness. Interestingly, PRDX1 expression was notably higher in HepG2 cells than in other HCC cell types such as Hep3B and Huh7 cells, whereas the expression levels of other PRDX family proteins (PRDX 2-6) were relatively consistent. The inhibition of PRDX1 expression and peroxidase activity by conoidin A resulted in markedly reduced stemness traits and increased cell death rate. Furthermore, in a xenograft mouse model, PRDX1 downregulation considerably inhibited the formation of solid tumors after plasma-activated medium (PAM) treatment. These findings underscore the critical role of PRDX 1 in regulating stemness and apoptosis in HCC cells under oxidative stress, highlighting PRDX1 as a promising therapeutic target for NTP-based treatment in HCC.
RESUMEN
BACKGROUND: Preeclampsia, especially early-onset preeclampsia (EO-PE), is a pregnancy complication that has serious consequences for the health of both the mother and the fetus. Although abnormal placentation due to mitochondrial dysfunction is speculated to contribute to the development of EO-PE, the underlying mechanisms have yet to be fully elucidated. METHODS: The expression and localization of Siglec-6 in the placenta from normal pregnancies, preterm birth and EO-PE patients were examined by RT-qPCR, Western blot and IHC. Transwell assays were performed to evaluate the effect of Siglec-6 on trophoblast cell migration and invasion. Seahorse experiments were conducted to assess the impact of disrupting Siglec-6 expression on mitochondrial function. Co-IP assay was used to examine the interaction of Siglec-6 with SHP1/SHP2. RNA-seq was employed to investigate the mechanism by which Siglec-6 inhibits mitochondrial function in trophoblast cells. RESULTS: The expression of Siglec-6 in extravillous trophoblasts is increased in placental tissues from EO-PE patients. Siglec-6 inhibits trophoblast cell migration and invasion and impairs mitochondrial function. Mechanismly, Siglec-6 inhibits the activation of NF-κB by recruiting SHP1/SHP2, leading to increased expression of GPR20. Notably, the importance of GPR20 function downstream of Siglec-6 in trophoblasts is supported by the observation that GPR20 downregulation rescues defects caused by Siglec-6 overexpression. Finally, overexpression of Siglec-6 in the placenta induces a preeclampsia-like phenotype in a pregnant mouse model. CONCLUSIONS: This study indicates that the regulatory pathway Siglec-6/GPR20 has a crucial role in regulating trophoblast mitochondrial function, and we suggest that Siglec-6 and GPR20 could serve as potential markers and targets for the clinical diagnosis and therapy of EO-PE.
Asunto(s)
Movimiento Celular , Mitocondrias , Preeclampsia , Receptores Acoplados a Proteínas G , Trofoblastos , Regulación hacia Arriba , Preeclampsia/metabolismo , Preeclampsia/genética , Preeclampsia/patología , Humanos , Embarazo , Femenino , Mitocondrias/metabolismo , Regulación hacia Arriba/genética , Trofoblastos/metabolismo , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Movimiento Celular/genética , Lectinas/metabolismo , Placenta/metabolismo , Ratones , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Diferenciación de Linfocitos B/genética , AdultoRESUMEN
BACKGROUND AND AIMS: NASH has emerged as a leading cause of chronic liver disease. However, the mechanisms that govern NASH fibrosis remain largely unknown. CREBZF is a CREB/ATF bZIP transcription factor that causes hepatic steatosis and metabolic defects in obesity. APPROACH AND RESULTS: Here, we show that CREBZF is a key mechanism of liver fibrosis checkpoint that promotes hepatocyte injury and exacerbates diet-induced NASH in mice. CREBZF deficiency attenuated liver injury, fibrosis, and inflammation in diet-induced mouse models of NASH. CREBZF increases HSC activation and fibrosis in a hepatocyte-autonomous manner by stimulating an extracellular matrix protein osteopontin, a key regulator of fibrosis. The inhibition of miR-6964-3p mediates CREBZF-induced production and secretion of osteopontin in hepatocytes. Adeno-associated virus -mediated rescue of osteopontin restored HSC activation, liver fibrosis, and NASH progression in CREBZF-deficient mice. Importantly, expression levels of CREBZF are increased in livers of diet-induced NASH mouse models and humans with NASH. CONCLUSIONS: Osteopontin signaling by CREBZF represents a previously unrecognized intrahepatic mechanism that triggers liver fibrosis and contributes to the severity of NASH.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Osteopontina , Animales , Humanos , Ratones , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Modelos Animales de Enfermedad , Hígado Graso/genética , Hígado Graso/metabolismo , Fibrosis , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/patología , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Osteopontina/genética , Osteopontina/metabolismoRESUMEN
BACKGROUND: Neurodegenerative diseases are increasingly recognized for their association with oxidative stress, which leads to progressive dysfunction and loss of neurons, manifesting in cognitive and motor impairments. This study aimed to elucidate the neuroprotective role of peroxiredoxin II (Prx II) in counteracting oxidative stress-induced mitochondrial damage, a key pathological feature of neurodegeneration. METHODS: We investigated the impact of Prx II deficiency on endoplasmic reticulum stress and mitochondrial dysfunction using HT22 cell models with knocked down and overexpressed Prx II. We observed alcohol-treated HT22 cells using transmission electron microscopy and monitored changes in the length of mitochondria-associated endoplasmic reticulum membranes and their contact with endoplasmic reticulum mitochondria contact sites (EMCSs). Additionally, RNA sequencing and bioinformatic analysis were conducted to identify the role of Prx II in regulating mitochondrial transport and the formation of EMCSs. RESULTS: Our results indicated that Prx II preserves mitochondrial integrity by facilitating the formation of EMCSs, which are essential for maintaining mitochondrial Ca2+ homeostasis and preventing mitochondria-dependent apoptosis. Further, we identified a novel regulatory axis involving Prx II, the transcription factor ATF3, and miR-181b-5p, which collectively modulate the expression of Armcx3, a protein implicated in mitochondrial transport. Our findings underscore the significance of Prx II in protecting neuronal cells from alcohol-induced oxidative damage and suggest that modulating the Prx II-ATF3-miR-181b-5p pathway may offer a promising therapeutic strategy against neurodegenerative diseases. CONCLUSIONS: This study not only expands our understanding of the cytoprotective mechanisms of Prx II but also offers necessary data for developing targeted interventions to bolster mitochondrial resilience in neurodegenerative conditions.
Asunto(s)
MicroARNs , Enfermedades Mitocondriales , Enfermedades Neurodegenerativas , Humanos , Peroxirredoxinas/genética , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Apoptosis , Estrés del Retículo Endoplásmico , MicroARNs/metabolismoRESUMEN
PURPOSE: Postoperative urinary retention (PUR) is a common complication after prostate enucleation, which leads to an increased length of hospital stay and decreased postoperative satisfaction. This study determined the predictive factors of postoperative urine retention within 1 month after prostate enucleation and investigated whether PUR influences surgical outcomes at the 2-week, 3-month, and 6-month follow-up time points. METHODS: Data were collected from the electronic medical records of 191 patients with benign prostatic obstruction (BPO) during October 2018 to September 2021. Of them, 180 patients who underwent thulium laser or plasma kinetic enucleation of the prostate (ThuLEP, PKEP) were separated into the PUR group (n = 24) and the non-PUR (NPUR) group (n = 156). Uroflowmetry and the International Prostate Symptom Score (IPSS) questionnaire were followed up at 2 weeks, 3 months, and 6 months postoperatively. RESULTS: The PUR group had a significantly higher percentage of patients with type 2 diabetes mellitus (DM) than the NPUR group. Postoperatively, compared with the NPUR group, the PUR group had significantly less improvement in changes in the IPSS Quality of Life scores at 2 weeks, the total IPSS(International Prostate Symptom Score) at all follow-up times, the IPSS-S(IPSS storage subscores) at 2 weeks and 3 months, and the IPSS-V(IPSS voiding subscores) at all follow-up times. Predictive factors for PUR include lower preoperative maximum urinary flow (Qmax), lower preoperative total IPSS, and higher operation time. CONCLUSION: Lower preoperative Qmax, lower IPSS scores, and longer operation time were risk factors for PUR. Furthermore, PUR could be a prognostic factor for prostatic enucleation surgical outcomes.
Asunto(s)
Complicaciones Posoperatorias , Prostatectomía , Hiperplasia Prostática , Retención Urinaria , Humanos , Masculino , Retención Urinaria/etiología , Retención Urinaria/epidemiología , Hiperplasia Prostática/cirugía , Anciano , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Persona de Mediana Edad , Prostatectomía/métodos , Prostatectomía/efectos adversos , Resultado del Tratamiento , Estudios Retrospectivos , EndoscopíaRESUMEN
Our knowledge of the coordination of intergenerational inheritance and offspring metabolic reprogramming by gastrointestinal endocrine factors is largely unknown. Here, we showed that secretin (SCT), a brain-gut peptide, is downregulated by overnutrition in pregnant mice and women. More importantly, genetic loss of SCT in the maternal gut results in undesirable phenotypes developed in offspring including enhanced high-fat diet (HFD)-induced obesity and attenuated browning of inguinal white adipose tissue (iWAT). Mechanistically, loss of maternal SCT represses iWAT browning in offspring by a global change in genome methylation pattern through upregulation of DNMT1. SCT functions to facilitate ubiquitination and degradation of DNMT1 by activating AMPKα, which contributes to the observed alteration of DNMT1 in progeny. Lastly, we showed that SCT treatment during pregnancy can reduce the development of obesity and improve glucose tolerance and insulin resistance in offspring of HFD-fed females, suggesting that SCT may serve as a novel biomarker or a strategy for preventing metabolic diseases.
Asunto(s)
Resistencia a la Insulina , Secretina , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , Obesidad/prevención & control , Embarazo , Secretina/metabolismoRESUMEN
The process of parturition is associated with inflammation within the uterine tissues, and IL-1ß is a key proinflammatory cytokine involved. Autophagy is emerging as an important pathway to remove redundant cellular components. However, it is not known whether IL-1ß employs the autophagy pathway to degrade collagen, thereby participating in membrane rupture at parturition. In this study, we investigated this issue in human amnion. Results showed that IL-1ß levels were significantly increased in human amnion obtained from deliveries with spontaneous labor and membrane rupture, which was accompanied by decreased abundance of COL1A1 and COL1A2 protein but not their mRNA, the two components of collagen I. Consistently, IL-1ß treatment of cultured primary human amnion fibroblasts reduced COL1A1 and COL1A2 protein but not their mRNA abundance along with increased abundance of autophagy activation markers, including the microtubule-associated protein L chain 3ß II/I ratio and autophagy-related 7 (ATG7) in the cells. The reduction in COL1A1 and COL1A2 protein abundance induced by IL-1ß could be blocked by the lysosome inhibitor chloroquine or small interfering RNA-mediated knockdown of ATG7 or ER-phagy receptor FAM134C, suggesting that FAM134C-mediated ER-phagy was involved in IL-1ß-induced reduction in COL1A1 and COL1A2 protein in amnion fibroblasts. Consistently, levels of L chain 3ß II/I ratio, ATG7, and FAM134C were significantly increased in human amnion obtained from deliveries with spontaneous labor and membrane rupture. Conclusively, increased IL-1ß abundance in human amnion may stimulate ER-phagy-mediated COL1A1 and COL1A2 protein degradation in amnion fibroblasts, thereby participating in membrane rupture at parturition.
RESUMEN
The process of parturition is associated with inflammation within the uterine tissues, and IL-1ß is a key proinflammatory cytokine involved. Autophagy is emerging as an important pathway to remove redundant cellular components. However, it is not known whether IL-1ß employs the autophagy pathway to degrade collagen, thereby participating in membrane rupture at parturition. In this study, we investigated this issue in human amnion. Results showed that IL-1ß levels were significantly increased in human amnion obtained from deliveries with spontaneous labor and membrane rupture, which was accompanied by decreased abundance of COL1A1 and COL1A2 protein but not their mRNA, the two components of collagen I. Consistently, IL-1ß treatment of cultured primary human amnion fibroblasts reduced COL1A1 and COL1A2 protein but not their mRNA abundance along with increased abundance of autophagy activation markers, including the microtubule-associated protein L chain 3ß II/I ratio and autophagy-related 7 (ATG7) in the cells. The reduction in COL1A1 and COL1A2 protein abundance induced by IL-1ß could be blocked by the lysosome inhibitor chloroquine or small interfering RNA-mediated knockdown of ATG7 or ER-phagy receptor FAM134C, suggesting that FAM134C-mediated ER-phagy was involved in IL-1ß-induced reduction in COL1A1 and COL1A2 protein in amnion fibroblasts. Consistently, levels of L chain 3ß II/I ratio, ATG7, and FAM134C were significantly increased in human amnion obtained from deliveries with spontaneous labor and membrane rupture. Conclusively, increased IL-1ß abundance in human amnion may stimulate ER-phagy-mediated COL1A1 and COL1A2 protein degradation in amnion fibroblasts, thereby participating in membrane rupture at parturition.
RESUMEN
BACKGROUND: Intracerebral hemorrhage (ICH) is a critical neurological condition with few treatment options, where secondary immune responses and specific cell death forms, like pyroptosis, worsen brain damage. Pyroptosis involves gasdermin-mediated membrane pores, increasing inflammation and neural harm, with the NLRP3/Caspase-1/GSDMD pathway being central to this process. Peroxiredoxin II (Prx II), recognized for its mitochondrial protection and reactive oxygen species (ROS) scavenging abilities, appears as a promising neuronal pyroptosis modulator. However, its exact role and action mechanisms need clearer definition. This research aims to explore Prx II impact on neuronal pyroptosis and elucidate its mechanisms, especially regarding endoplasmic reticulum (ER) stress and oxidative stress-induced neuronal damage modulation. METHODS AND RESULTS: Utilizing MTT assays, Microscopy, Hoechst/PI staining, Western blotting, and immunofluorescence, we found Prx II effectively reduces LPS/ATP-induced pyroptosis and neuroinflammation in HT22 hippocampal neuronal cells. Our results indicate Prx II's neuroprotective actions are mediated through PI3K/AKT activation and ER stress pathway inhibition, diminishing mitochondrial dysfunction and decreasing neuronal pyroptosis through the ROS/MAPK/NF-κB pathway. These findings highlight Prx II potential therapeutic value in improving intracerebral hemorrhage outcomes by lessening secondary brain injury via critical signaling pathway modulation involved in neuronal pyroptosis. CONCLUSIONS: Our study not only underlines Prx II importance in neuroprotection but also opens new therapeutic intervention avenues in intracerebral hemorrhage, stressing the complex interplay between redox regulation, ER stress, and mitochondrial dynamics in neuroinflammation and cell death management.
Asunto(s)
Estrés del Retículo Endoplásmico , Estrés Oxidativo , Peroxirredoxinas , Piroptosis , Animales , Ratones , Línea Celular , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/complicaciones , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Peroxirredoxinas/metabolismo , Piroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Sustainably feeding a growing population is a grand challenge, and one that is particularly difficult in regions that are dominated by smallholder farming. Despite local successes, mobilizing vast smallholder communities with science- and evidence-based management practices to simultaneously address production and pollution problems has been infeasible. Here we report the outcome of concerted efforts in engaging millions of Chinese smallholder farmers to adopt enhanced management practices for greater yield and environmental performance. First, we conducted field trials across China's major agroecological zones to develop locally applicable recommendations using a comprehensive decision-support program. Engaging farmers to adopt those recommendations involved the collaboration of a core network of 1,152 researchers with numerous extension agents and agribusiness personnel. From 2005 to 2015, about 20.9 million farmers in 452 counties adopted enhanced management practices in fields with a total of 37.7 million cumulative hectares over the years. Average yields (maize, rice and wheat) increased by 10.8-11.5%, generating a net grain output of 33 million tonnes (Mt). At the same time, application of nitrogen decreased by 14.7-18.1%, saving 1.2 Mt of nitrogen fertilizers. The increased grain output and decreased nitrogen fertilizer use were equivalent to US$12.2 billion. Estimated reactive nitrogen losses averaged 4.5-4.7 kg nitrogen per Megagram (Mg) with the intervention compared to 6.0-6.4 kg nitrogen per Mg without. Greenhouse gas emissions were 328 kg, 812 kg and 434 kg CO2 equivalent per Mg of maize, rice and wheat produced, respectively, compared to 422 kg, 941 kg and 549 kg CO2 equivalent per Mg without the intervention. On the basis of a large-scale survey (8.6 million farmer participants) and scenario analyses, we further demonstrate the potential impacts of implementing the enhanced management practices on China's food security and sustainability outlook.
Asunto(s)
Agricultura/métodos , Conservación de los Recursos Naturales , Productos Agrícolas/crecimiento & desarrollo , Eficiencia Organizacional , Agricultores , China , Técnicas de Apoyo para la Decisión , Grano Comestible/crecimiento & desarrollo , Política Ambiental , Fertilizantes/estadística & datos numéricos , Abastecimiento de Alimentos/métodos , Efecto Invernadero , Nitrógeno/metabolismo , Oryza/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Zea mays/crecimiento & desarrolloRESUMEN
Hundreds of millions of smallholders in emerging countries substantially overuse nitrogen (N) fertilizers, driving local environmental pollution and global climate change. Despite local demonstration-scale successes, widespread mobilization of smallholders to adopt precise N management practices remains a challenge, largely due to associated high costs and complicated sampling and calculations. Here, we propose a long-term steady-state N balance (SSNB) approach without these complications that is suitable for sustainable smallholder farming. The hypothesis underpinning the concept of SSNB is that an intensively cultivated soil-crop system with excessive N inputs and high N losses can be transformed into a steady-state system with minimal losses while maintaining high yields. Based on SSNB, we estimate the optimized N application range across 3,824 crop counties for the three staple crops in China. We evaluated SSNB first in ca. 18,000 researcher-managed on-farm trials followed by testing in on-farm trials with 13,760 smallholders who applied SSNB-optimized N rates under the guidance of local extension staff. Results showed that SSNB could significantly reduce N fertilizer use by 21 to 28% while maintaining or increasing yields by 6 to 7%, compared to current smallholder practices. The SSNB approach could become an effective tool contributing to the global N sustainability of smallholder agriculture.
RESUMEN
OBJECTIVES: We explore patient-reported behaviors and activities within 30-days post-stroke hospitalization and their role in reducing death or readmissions within 90-days post-stroke. METHODS: We constructed the adequate transitions of care (ATOC) composite score, measuring patient-reported participation in eligible behaviors and activities (diet modification, weekly exercise, follow-up medical appointment attendance, medication adherence, therapy use, and toxic habit cessation) within 30 days post-stroke hospital discharge. We analyzed ATOC scores in ischemic and intracerebral hemorrhage stroke patients discharged from the hospital to home or rehabilitation facilities and enrolled in the NIH-funded Transitions of Care Stroke Disparities Study (TCSD-S). We utilized Cox regression analysis, with the progressive adjustment for sociodemographic variables, social determinants of health, and stroke risk factors, to determine the associations between ATOC score within 30-days and death or readmission within 90-days post-stroke. RESULTS: In our sample of 1239 stroke patients (mean age 64 +/- 14, 58 % male, 22 % Hispanic, 22 % Black, 52 % White, 76 % discharged home), 13 % experienced a readmission or death within 90 days (3 deaths, 160 readmissions, 3 readmissions with subsequent death). Seventy percent of participants accomplished a ≥75 % ATOC score. A 25 % increase in ATOC was associated with a respective 20 % (95 % CI 3-33 %) reduced risk of death or readmission within 90-days. CONCLUSION: ATOC represents modifiable behaviors and activities within 30-days post-stroke that are associated with reduced risk of death or readmission within 90-days post-stroke. The ATOC score should be validated in other populations, but it can serve as a tool for improving transitions of stroke care initiatives and interventions.
Asunto(s)
Alta del Paciente , Readmisión del Paciente , Humanos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Factores de Tiempo , Factores de Riesgo , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular Isquémico/mortalidad , Accidente Cerebrovascular Isquémico/terapia , Accidente Cerebrovascular Isquémico/diagnóstico , Resultado del Tratamiento , Cumplimiento de la Medicación , Estados Unidos , Medición de Riesgo , Accidente Cerebrovascular/mortalidad , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular Hemorrágico/terapia , Accidente Cerebrovascular Hemorrágico/mortalidad , Accidente Cerebrovascular Hemorrágico/diagnóstico , Cuidado de Transición , Conducta de Reducción del Riesgo , Anciano de 80 o más Años , Conductas Relacionadas con la SaludRESUMEN
Anthropogenic reactive nitrogen (Nr) loss has been a critical environmental issue. However, due to the limitations of data availability and appropriate methods, the estimation of Nr loss from rice paddies and associated spatial patterns at a fine scale remain unclear. Here, we estimated the background Nr loss (BNL, i.e., Nr loss from soils without fertilization) and the loss factors (the percentage of Nr loss from synthetic fertilizer, LFs) for five loss pathways in rice paddies and identified the national 1 × 1 km spatial variations using data-driven models combined with multi-source data. Based on established machine learning models, an average of 23.4% (15.3-34.6%, 95% confidence interval) of the synthetic N fertilizer was lost to the environment, in the forms of NH3 (17.4%, 10.9-26.7%), N2O (0.5%, 0.3-0.8%), NO (0.2%, 0.1-0.4%), N leaching (3.1%, 0.8-5.7%), and runoff (2.3%, 0.6-4.5%). The total Nr loss from Chinese rice paddies was estimated to be 1.92 ± 0.52 Tg N yr-1 in 2021, in which synthetic fertilizer-induced Nr loss accounted for 69% and BNL accounted for the other 31%. The hotspots of Nr loss were concentrated in the middle and lower regions of the Yangtze River, an area with extensive rice cultivation. This study improved the estimation accuracy of Nr losses and identified the hotspots, which could provide updated insights for policymakers to set the priorities and strategies for Nr loss mitigation.
Asunto(s)
Fertilizantes , Nitrógeno , Oryza , Suelo , Agricultura , China , Fertilizantes/análisis , Nitrógeno/análisis , Suelo/químicaRESUMEN
BACKGROUND: Short-term dual antiplatelet therapy (DAPT) reduces early stroke recurrence after mild noncardioembolic ischemic stroke (NCIS). We aim to evaluate temporal trends and determinants of DAPT prescription after mild NCIS in the Florida Stroke Registry, a statewide registry across Get With The Guidelines-Stroke participating hospitals. METHODS: In this cross-sectional analysis of a cohort study, we included patients with mild NCIS (National Institutes of Health Stroke Scale score ≤3) who were potentially eligible for DAPT across 168 Florida Stroke Registry participating hospitals between January 2010 and September 2022. Using antiplatelet prescription as the dependent variable (DAPT versus single antiplatelet therapy), we fit logistic regression models adjusted for patient-related factors, hospital-related factors, clinical presentation, vascular risk factors, and ischemic stroke subtype, to obtain adjusted odds ratios (aORs) with 95% CIs. RESULTS: From 283â 264 Florida Stroke Registry ischemic stroke patients during the study period, 109â 655 NCIS were considered eligible. Among these, 37â 058 patients with National Institutes of Health Stroke Scale score >3 were excluded, resulting in a sample of 72â 597 mild NCIS (mean age 68±14 years; female 47.3%). Overall, 24â 693 (34.0%) patients with mild NCIS were discharged on DAPT and 47â 904 (66.0%) on single antiplatelet therapy. DAPT prescription increased from 25.7% in 2010 to 52.8% in 2022 (ß/year 2.5% [95% CI, 1.5%-3.4%]). Factors associated with DAPT prescription were premorbid antiplatelet therapy (aOR, 4.66 [95% CI, 2.20-9.88]), large-artery atherosclerosis (aOR, 1.68 [95% CI, 1.43-1.97]), diabetes (aOR, 1.29 [95% CI, 1.13-1.47]), and hyperlipidemia (aOR, 1.24 [95% CI, 1.10-1.39]), whereas female sex (aOR, 0.83 [95% CI, 0.75-0.93]), being non-Hispanic Black patients (compared with non-Hispanic White patients; aOR, 0.78 [95% CI, 0.68-0.90]), admission to a Thrombectomy-capable Stroke Center (compared with Comprehensive Stroke Center; aOR, 0.78 [95% CI, 0.66-0.92]), time-to-presentation 1 to 7 days from last seen well (compared with <24 h; aOR, 0.86 [95% CI, 0.76-0.96]), and small-vessel disease stroke (aOR, 0.81 [95% CI, 0.72-0.94]) were associated with not receiving DAPT at discharge. CONCLUSIONS: Despite a temporal trend increase in DAPT prescription after mild NCIS, we found substantial underutilization of evidence-based DAPT associated with significant disparities in stroke care.
Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Inhibidores de Agregación Plaquetaria/uso terapéutico , Aspirina/uso terapéutico , Clopidogrel/uso terapéutico , Estudios de Cohortes , Estudios Transversales , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/inducido químicamente , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Quimioterapia Combinada , Resultado del TratamientoRESUMEN
BACKGROUND: The Florida Stroke Act, signed into law in 2004, set criteria for Comprehensive Stroke Centers (CSC). For a set time period, Florida hospitals were permitted to either receive national certification (NC) or could self-attest (SA) as fulfilling CSC criteria. The aim of this project was to evaluate the quality of ischemic stroke care in NC versus SA stroke centers in Florida, using well-known, guideline-driven ischemic stroke outcome metrics. METHODS: A total of 37 CSCs (74% of Florida CSCs) in the Florida Stroke Registry from January 2013 through December 2018 were analyzed, including 19 SA CSCs and 18 NC (13 CSCs and 5 Thrombectomy-Capable Stroke Center). Hospital- and patient-level characteristics and stroke metrics were evaluated, adjusting for demographics, medical comorbidities, and stroke severity. RESULTS: A total of 78 424 acute ischemic stroke cases, 36 089 from SA CSCs and 42 335 from NC CSC/Thrombectomy-Capable Stroke Centers were analyzed. NC centers had older patients (73 [61-83] versus 71 [60-81]; P<0.001) with more severe strokes (median National Institutes of Health Stroke Scale score of 5 versus 4; P<0.001). NC had higher intravenous tissue-type plasminogen activator utilization (15% versus 13%; P<0.001), endovascular treatment (10% versus 7%; P<0.001) and faster median door-to-computed tomography (23 minutes [11-73] versus 31 [12-78]; P<0.001), door-to-needle (37 minutes [26-50] versus 45 [34-58]; P<0.001) and door-to-puncture times (77 minutes [50-113] versus 93 [62-140]; P<0.001). In adjusted analysis, patients arriving to NC hospitals by 3 hours were more likely to get intravenous tissue-type plasminogen activator in the 3- to 4.5-hour window (adjusted odds ratio, 1.87 [95% CI, 1.30-2.68]; P=0.001) and more likely to be treated with intravenous tissue-type plasminogen activator within 45 minutes (adjusted odds ratio, 1.61 [95% CI, 1.04-2.50]; P=0.04) compared with SA CSCs. CONCLUSIONS: Among Florida-Stroke Registry CSCs, acute ischemic stroke performance and treatment measures at NC centers are superior to SA CSCs. These findings have implications for stroke systems of care in Florida and support legislation updates requiring NC and removal of SA claims.