Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 351(6): e1700381, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29708285

RESUMEN

A novel series of imidazo[4,5-c]pyridine-based CDK2 inhibitors were designed from the structure of CYC202 via scaffold hopping strategy. These compounds were synthesized and biologically evaluated for their CDK2 inhibitory and in vitro anti-proliferation potential against cancer cell lines. Several compounds exhibited potent CDK2 inhibition with IC50 values of less than 1 µM. The most potent compound 5b showed excellent CDK2 inhibitory (IC50 = 21 nM) and in vitro anti-proliferation activity against three different cell lines (HL60, A549, and HCT116). The molecular docking and dynamic studies portrayed the potential binding mechanism between 5b and CDK2, and several key interactions between them were observed, which would be the reason for its potent CDK2 inhibitory and anti-proliferation activities. Therefore, the pyridin-3-ylmethyl moiety would serve as an excellent pharmacophore for the development of novel CDK2 inhibitors for targeted anti-cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Imidazoles/farmacología , Piridinas/farmacología , Células A549 , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Células HL-60 , Humanos , Imidazoles/síntesis química , Imidazoles/química , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad
2.
Medchemcomm ; 8(9): 1835-1844, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30108894

RESUMEN

A set of ninety-eight B-RafV600E inhibitors was used for the development of a molecular docking based QSAR model using linear and non-linear regression models. The integration of docking scores and key interaction profiles significantly improved the accuracy of the QSAR models, providing reasonable statistical parameters (Rtrain2 = 0.935, Rtest2 = 0.728 and QCV2 = 0.905). The established MD-SVR (molecular docking based SMV regression) model as well as model screening of a natural product database was carried out and two natural products (quercetin and myricetin) with good prediction activities were biologically evaluated. Both compounds exhibited promising B-RafV600E inhibitory activities (ICQuercetin50 = 7.59 µM and ICMyricetin50 = 1.56 µM), suggesting a high reliability and good applicability of the established MD-SVR model in the future development of B-RafV600E inhibitors with high efficacy.

3.
J Agric Food Chem ; 65(15): 3204-3211, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28358187

RESUMEN

Succinate dehydrogenase (SDH) has been demonstrated as a promising target for fungicide discovery. Crystal structure data have indicated that the carboxyl "core" of current SDH inhibitors contributed largely to their binding affinity. Thus, identifying novel carboxyl "core" SDH inhibitors would remarkably improve the biological potency of current SDHI fungicides. Herein, we report the discovery and optimization of novel carboxyl scaffold SDH inhibitor via the integration of in silico library design and a highly specific amide feature-based pharmacophore model. To our delight, a promising SDH inhibitor, A16c (IC50 = 1.07 µM), with a novel pyrazol-benzoic scaffold was identified, which displayed excellent activity against Rhizoctonia solani (EC50 = 11.0 µM) and improved potency against Sclerotinia sclerotiorum (EC50 = 5.5 µM) and Phyricularia grisea (EC50 = 12.0 µM) in comparison with the positive control thifluzamide, with EC50 values of 0.09, 33.2, and 33.4 µM, respectively. The results showed that our virtual screening strategy could serve as a powerful tool to accelerate the discovery of novel SDH inhibitors.


Asunto(s)
Inhibidores Enzimáticos/química , Proteínas Fúngicas/antagonistas & inhibidores , Fungicidas Industriales/química , Succinato Deshidrogenasa/antagonistas & inhibidores , Ascomicetos/efectos de los fármacos , Ascomicetos/enzimología , Simulación por Computador , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungicidas Industriales/farmacología , Biblioteca de Genes , Cinética , Rhizoctonia/efectos de los fármacos , Rhizoctonia/enzimología , Succinato Deshidrogenasa/química , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA