Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2925, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575649

RESUMEN

The advancement of laser-induced graphene (LIG) technology has streamlined the fabrications of flexible graphene devices. However, the ultrafast kinetics triggered by laser irradiation generates intrinsic amorphous characteristics, leading to high resistivity and compromised performance in electronic devices. Healing graphene defects in specific patterns is technologically challenging by conventional methods. Herein, we report the rapid rectification of LIG's topological defects by flash Joule heating in milliseconds (referred to as F-LIG), whilst preserving its overall structure and porosity. The F-LIG exhibits a decreased ID/IG ratio from 0.84 - 0.33 and increased crystalline domain from Raman analysis, coupled with a 5-fold surge in conductivity. Pair distribution function and atomic-resolution imaging delineate a broader-range order of F-LIG with a shorter C-C bond of 1.425 Å. The improved crystallinity and conductivity of F-LIG with excellent flexibility enables its utilization in high-performance soft electronics and low-voltage disinfections. Notably, our F-LIG/polydimethylsiloxane strain sensor exhibits a gauge factor of 129.3 within 10% strain, which outperforms pristine LIG by 800%, showcasing significant potential for human-machine interfaces.

2.
Sci Adv ; 8(2): eabl6700, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35030019

RESUMEN

The coronavirus pandemic has highlighted the importance of developing intelligent robotics to prevent infectious disease spread. Human-machine interfaces (HMIs) give a chance of interactions between users and robotics, which play a significant role in teleoperating robotics. Conventional HMIs are based on bulky, rigid, and expensive machines, which mainly focus on robots/machines control, but lack of adequate feedbacks to users, which limit their applications in conducting complicated tasks. Therefore, developing closed-loop HMIs with both accurate sensing and feedback functions is extremely important. Here, we present a closed-loop HMI system based on skin-integrated electronics, whose electronics compliantly interface with the whole body for wireless motion capturing and haptic feedback via Bluetooth, Wireless Fidelity (Wi-Fi), and Internet. The integration of visual and haptic VR via skin-integrated electronics together into a closed-loop HMI for robotic VR demonstrates great potentials in noncontact collection of bio samples, nursing infectious disease patients and many others.

3.
Sci Adv ; 8(51): eade2450, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36563155

RESUMEN

Tactile sensations are mainly transmitted to each other by physical touch. Wireless touch perception could be a revolution for us to interact with the world. Here, we report a wireless self-sensing and haptic-reproducing electronic skin (e-skin) to realize noncontact touch communications. A flexible self-sensing actuator was developed to provide an integrated function in both tactile sensing and haptic feedback. When this e-skin was dynamically pressed, the actuator generated an induced voltage as tactile information. Via wireless communication, another e-skin could receive this tactile data and run a synchronized haptic reproduction. Thus, touch could be wirelessly conveyed in bidirections between two users as a touch intercom. Furthermore, this e-skin could be connected with various smart devices to form a touch internet of things where one-to-one and one-to-multiple touch delivery could be realized. This wireless touch presents huge potentials in remote touch video, medical care/assistance, education, and many other applications.

4.
Biosensors (Basel) ; 11(11)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34821651

RESUMEN

Hemodynamic status has been perceived as an important diagnostic value as fundamental physiological health conditions, including decisive signs of fatal diseases like arteriosclerosis, can be diagnosed by monitoring it. Currently, the conventional hemodynamic monitoring methods highly rely on imaging techniques requiring inconveniently large numbers of operation procedures and equipment for mapping and with a high risk of radiation exposure. Herein, an ultra-thin, noninvasive, and flexible electronic skin (e-skin) hemodynamic monitoring system based on the thermal properties of blood vessels underneath the epidermis that can be portably attached to the skin for operation is introduced. Through a series of thermal sensors, the temperatures of each subsection of the arrayed sensors are observed in real-time, and the measurements are transmitted and displayed on the screen of an external device wirelessly through a Bluetooth module using a graphical user interface (GUI). The degrees of the thermal property of subsections are indicated with a spectrum of colors that specify the hemodynamic status of the target vessel. In addition, as the sensors are installed on a soft substrate, they can operate under twisting and bending without any malfunction. These characteristics of e-skin sensors exhibit great potential in wearable and portable diagnostics including point-of-care (POC) devices.


Asunto(s)
Monitoreo Fisiológico/instrumentación , Termografía , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica , Humanos , Piel
5.
Research (Wash D C) ; 2020: 1085417, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33134931

RESUMEN

Electronic skin made of thin, soft, stretchable devices that can mimic the human skin and reconstruct the tactile sensation and perception offers great opportunities for prosthesis sensing, robotics controlling, and human-machine interfaces. Advanced materials and mechanics engineering of thin film devices has proven to be an efficient route to enable and enhance flexibility and stretchability of various electronic skins; however, the density of devices is still low owing to the limitation in existing fabrication techniques. Here, we report a high-throughput one-step process to fabricate large tactile sensing arrays with a sensor density of 25 sensors/cm2 for electronic skin, where the sensors are based on intrinsically stretchable piezoelectric lead zirconate titanate (PZT) elastomer. The PZT elastomer sensor arrays with great uniformity and passive-driven manner enable high-resolution tactile sensing, simplify the data acquisition process, and lower the manufacturing cost. The high-throughput fabrication process provides a general platform for integrating intrinsically stretchable materials into large area, high device density soft electronics for the next-generation electronic skin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA