RESUMEN
The advent of the phylogenomic era has significantly improved our understanding of the evolutionary history and biogeography of Southeast Asia's diverse avian fauna. However, the taxonomy and phylogenetic relationships of many Southeast Asian birds remain poorly resolved, especially for those with large geographic ranges, which might have experienced both ancient and recent geological and environmental changes. In this study, we examined the evolutionary history and biogeography of the hill partridges (Galliformes: Phasianidae: Arborophila spp.), currently the second most speciose galliform genus, and thought to have colonized Southeast Asia from Africa. We present a well-resolved phylogeny of 14 Arborophila species inferred from ultra-conserved elements, exons, and mitochondrial genomes from both fresh and museum samples, which representing almost complete coverage of the genus. Our fossil-calibrated divergence time estimates and biogeographic modeling showed the ancestor of Arborophila arrived in Indochina during the early Miocene, but the initial divergence within Arborophila did not occur until ~10 Ma when global cooling intensified. Subsequent dispersal and diversification within Arborophila were driven by several tectonic and climatic events. In particular, we found evidence of rapid radiation in Indochinese Arborophila during the Pliocene global cooling and extensive dispersal and speciation of Sundaic Arborophila during the Pleistocene sea-level fluctuations. Taken together, these results suggest that the evolutionary history and biogeography of Arborophila were influenced by complex interactions among historical, geological and climatic events in Southeast Asia.
Asunto(s)
Evolución Biológica , Galliformes/genética , Filogeografía , África , Animales , Asia Sudoriental , Secuencia de Bases , Exones/genética , Genoma Mitocondrial , Filogenia , Especificidad de la Especie , Factores de TiempoRESUMEN
The trade in wild animals involves one-third of the world's bird species and thousands of other vertebrate species. Although a few species are imperiled as a result of the wildlife trade, the lack of field studies makes it difficult to gauge how serious a threat it is to biodiversity. We used data on changes in bird abundances across space and time and information from trapper interviews to evaluate the effects of trapping wild birds for the pet trade in Sumatra, Indonesia. To analyze changes in bird abundance over time, we used data gathered over 14 years of repeated bird surveys in a 900-ha forest in southern Sumatra. In northern Sumatra, we surveyed birds along a gradient of trapping accessibility, from the edge of roads to 5 km into the forest interior. We interviewed 49 bird trappers in northern Sumatra to learn which species they targeted and how far they went into the forest to trap. We used prices from Sumatran bird markets as a proxy for demand and, therefore, trapping pressure. Market price was a significant predictor of species declines over time in southern Sumatra (e.g., given a market price increase of approximately $50, the log change in abundance per year decreased by 0.06 on average). This result indicates a link between the market-based pet trade and community-wide species declines. In northern Sumatra, price and change in abundance were not related to remoteness (distance from the nearest road). However, based on our field surveys, high-value species were rare or absent across this region. The median maximum distance trappers went into the forest each day was 5.0 km. This suggests that trapping has depleted bird populations across our remoteness gradient. We found that less than half of Sumatra's remaining forests are >5 km from a major road. Our results suggest that trapping for the pet trade threatens birds in Sumatra. Given the popularity of pet birds across Southeast Asia, additional studies are urgently needed to determine the extent and magnitude of the threat posed by the pet trade.
RESUMEN
There are few empirical data, particularly collected simultaneously from multiple sites, on extinctions resulting from human-driven land-use change. Southeast Asia has the highest deforestation rate in the world, but the resulting losses of biological diversity remain poorly documented. Between November 2006 and March 2008, we conducted bird surveys on six landbridge islands in Malaysia and Indonesia. These islands were surveyed previously for birds in the early 1900 s, when they were extensively forested. Our bird inventories of the islands were nearly complete, as indicated by sampling saturation curves and nonparametric true richness estimators. From zero (Pulau Malawali and Pulau Mantanani) to 15 (Pulau Bintan) diurnal resident landbird species were apparently extirpated since the early 1900 s. Adding comparable but published extinction data from Singapore to our regression analyses, we found there were proportionally fewer forest bird extinctions in areas with greater remaining forest cover. Nevertheless, the statistical evidence to support this relationship was weak, owing to our unavoidably small sample size. Bird species that are restricted to the Indomalayan region, lay few eggs, are heavier, and occupy a narrower habitat breadth, were most vulnerable to extinction on Pulau Bintan. This was the only island where sufficient data existed to analyze the correlates of extinction. Forest preservation and restoration are needed on these islands to conserve the remaining forest avifauna. Our study of landbridge islands indicates that deforestation may increasingly threaten Southeast Asian biodiversity.
Asunto(s)
Biodiversidad , Aves/fisiología , Conservación de los Recursos Naturales/estadística & datos numéricos , Extinción Biológica , Geografía , Animales , Indonesia , Malasia , Dinámica Poblacional , Análisis de Regresión , Especificidad de la EspecieRESUMEN
The world's biomes and their associated ecosystems are artificially fractured by geopolitical boundaries that define countries. Yet 'transboundary' landscapes often overlap with biodiversity hotspots, contain surprisingly important ecosystems, and provide critical habitats for threatened species. Notwithstanding, biodiversity in these landscapes is increasingly imperiled by infrastructure, including walls and fences along borders and cross-border roads that drive landscape fragmentation and the loss of ecological connectivity. Associated problems due to reduced governance (e.g., illegal wildlife trade) also undermine conservation efforts in these important regions. In this review, we distinguish positive and negative effects of transboundary frontiers on biodiversity conservation, discuss lessons from existing frameworks, and identify scenarios that can maximize opportunities for biodiversity conservation in transboundary frontiers.
Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Animales Salvajes , Biodiversidad , Especies en Peligro de ExtinciónRESUMEN
In birds and mammals, mobbing calls constitute an important form of social information that can attract numerous sympatric species to localized mobbing aggregations. While such a response is thought to reduce the future predation risk for responding species, there is surprisingly little empirical evidence to support this hypothesis. One way to test the link between predation risk reduction and mobbing attraction involves testing the relationship between species' attraction to mobbing calls and the functional traits that define their vulnerability to predation risk. Two important traits known to influence prey vulnerability include relative prey-to-predator body size ratio and the overlap in space use between predator and prey; in combination, these measures strongly influence prey accessibility, and therefore their vulnerability, to predators. Here, we combine community surveys with behavioral experiments of a diverse bird assemblage in the lowland rainforest of Sumatra to test whether the functional traits of body mass (representing body size) and foraging height (representing space use) can predict species' attraction to heterospecific mobbing calls. At four forest sites along a gradient of forest degradation, we characterized the resident bird communities using point count and mist-netting surveys, and determined the species groups attracted to standardized playbacks of mobbing calls produced by five resident bird species of roughly similar body size and foraging height. We found that (1) a large, diverse subcommunity of bird species was attracted to the mobbing calls and (2) responding species (especially the most vigorous respondents) tended to be (a) small (b) mid-storey foragers (c) with similar trait values as the species producing the mobbing calls. Our findings from the relatively lesser known bird assemblages of tropical Asia add to the growing evidence for the ubiquity of heterospecific information networks in animal communities, and provide empirical support for the long-standing hypothesis that predation risk reduction is a major benefit of mobbing information networks.
RESUMEN
The Indonesian island of Sulawesi, a globally important hotspot of avian endemism, has been relatively poorly studied ornithologically, to the extent that several new bird species from the region have been described to science only recently, and others have been observed and photographed, but never before collected or named to science. One of these is a new species of Muscicapa flycatcher that has been observed on several occasions since 1997. We collected two specimens in Central Sulawesi in 2012, and based on a combination of morphological, vocal and genetic characters, we describe the new species herein, more than 15 years after the first observations. The new species is superficially similar to the highly migratory, boreal-breeding Gray-streaked Flycatcher Muscicapa griseisticta, which winters in Sulawesi; however, the new species differs strongly from M. griseisticta in several morphological characters, song, and mtDNA. Based on mtDNA, the new species is only distantly related to M. griseisticta, instead being a member of the M. dauurica clade. The new species is evidently widely distributed in lowland and submontane forest throughout Sulawesi. This wide distribution coupled with the species' apparent tolerance of disturbed habitats suggests it is not currently threatened with extinction.
Asunto(s)
ADN Mitocondrial/genética , Ecosistema , Passeriformes/anatomía & histología , Passeriformes/genética , Animales , ADN Mitocondrial/química , Geografía , Indonesia , Datos de Secuencia Molecular , Passeriformes/clasificación , Análisis de Componente Principal , Análisis de Secuencia de ADN , Especificidad de la Especie , Vocalización AnimalRESUMEN
Each year, numerous species thought to have disappeared are rediscovered. Yet, do these rediscoveries represent the return of viable populations or the delayed extinction of doomed species? We document the number, distribution and conservation status of rediscovered amphibian, bird, and mammal species globally. Over the past 122 years, at least 351 species have been rediscovered, most occurring in the tropics. These species, on average, were missing for 61 years before being rediscovered (range of 3-331 years). The number of rediscoveries per year increased over time and the majority of these rediscoveries represent first documentations since their original description. Most rediscovered species have restricted ranges and small populations, and 92% of amphibians, 86% of birds, and 86% of mammals are highly threatened, independent of how long they were missing or when they were rediscovered. Under the current trends of widespread habitat loss, particularly in the tropics, most rediscovered species remain on the brink of extinction.