Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 82(14): 2681-2695.e6, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35714614

RESUMEN

Serotonin (or 5-hydroxytryptamine, 5-HT) is an important neurotransmitter that activates 12 different G protein-coupled receptors (GPCRs) through selective coupling of Gs, Gi, or Gq proteins. The structural basis for G protein subtype selectivity by these GPCRs remains elusive. Here, we report the structures of the serotonin receptors 5-HT4, 5-HT6, and 5-HT7 with Gs, and 5-HT4 with Gi1. The structures reveal that transmembrane helices TM5 and TM6 alternate lengths as a macro-switch to determine receptor's selectivity for Gs and Gi, respectively. We find that the macro-switch by the TM5-TM6 length is shared by class A GPCR-G protein structures. Furthermore, we discover specific residues within TM5 and TM6 that function as micro-switches to form specific interactions with Gs or Gi. Together, these results present a common mechanism of Gs versus Gi protein coupling selectivity or promiscuity by class A GPCRs and extend the basis of ligand recognition at serotonin receptors.


Asunto(s)
Receptores Acoplados a Proteínas G , Serotonina , Proteínas de Unión al GTP/metabolismo , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(26): e2321710121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38885377

RESUMEN

Somatostatin receptor 5 (SSTR5) is an important G protein-coupled receptor and drug target for neuroendocrine tumors and pituitary disorders. This study presents two high-resolution cryogenicelectron microscope structures of the SSTR5-Gi complexes bound to the cyclic neuropeptide agonists, cortistatin-17 (CST17) and octreotide, with resolutions of 2.7 Å and 2.9 Å, respectively. The structures reveal that binding of these peptides causes rearrangement of a "hydrophobic lock", consisting of residues from transmembrane helices TM3 and TM6. This rearrangement triggers outward movement of TM6, enabling Gαi protein engagement and receptor activation. In addition to hydrophobic interactions, CST17 forms conserved polar contacts similar to somatostatin-14 binding to SSTR2, while further structural and functional analysis shows that extracellular loops differently recognize CST17 and octreotide. These insights elucidate agonist selectivity and activation mechanisms of SSTR5, providing valuable guidance for structure-based drug development targeting this therapeutically relevant receptor.


Asunto(s)
Octreótido , Receptores de Somatostatina , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/química , Humanos , Octreótido/química , Octreótido/farmacología , Octreótido/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/química , Microscopía por Crioelectrón , Unión Proteica , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo , Somatostatina/metabolismo , Somatostatina/química , Somatostatina/análogos & derivados , Modelos Moleculares , Células HEK293
3.
Acta Pharmacol Sin ; 44(1): 1-7, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35778488

RESUMEN

As important drug targets, G protein-coupled receptors (GPCRs) play pivotal roles in a wide range of physiological processes. Extensive efforts of structural biology have been made on the study of GPCRs. However, a large portion of GPCR structures remain unsolved due to structural instability. Recently, AlphaFold2 has been developed to predict structure models of many functionally important proteins including all members of the GPCR family. Herein we evaluated the accuracy of GPCR structure models predicted by AlphaFold2. We revealed that AlphaFold2 could capture the overall backbone features of the receptors. However, the predicted models and experimental structures were different in many aspects including the assembly of the extracellular and transmembrane domains, the shape of the ligand-binding pockets, and the conformation of the transducer-binding interfaces. These differences impeded the use of predicted structure models in the functional study and structure-based drug design of GPCRs, which required reliable high-resolution structural information.


Asunto(s)
Receptores Acoplados a Proteínas G , Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Conformación Molecular , Ligandos , Conformación Proteica
4.
Cell Discov ; 10(1): 91, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39223120

RESUMEN

Prolactin-releasing peptide (PrRP) is an RF-amide neuropeptide that binds and activates its cognate G protein-coupled receptor, prolactin-releasing peptide receptor (PrRPR), also known as GPR10. PrRP and PrRPR are highly conserved across mammals and involved in regulating a range of physiological processes, including stress response, appetite regulation, pain modulation, cardiovascular function, and potentially reproductive functions. Here we present cryo-electron microscopy structures of PrRP-bound PrRPR coupled to Gq or Gi heterotrimer, unveiling distinct molecular determinants underlying the specific recognition of the ligand's C-terminal RF-amide motif. We identify a conserved polar pocket that accommodates the C-terminal amide shared by RF-amide peptides. Structural comparison with neuropeptide Y receptors reveals both similarities and differences in engaging the essential RF/RY-amide motifs. Our findings demonstrate the general mechanism governing RF-amide motif recognition by PrRPR and RF-amide peptide receptors, and provide a foundation for elucidating activation mechanisms and developing selective drugs targeting this important peptide-receptor system.

5.
Sci Adv ; 9(11): eade9020, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36921049

RESUMEN

Motilin is an endogenous peptide hormone almost exclusively expressed in the human gastrointestinal (GI) tract. It activates the motilin receptor (MTLR), a class A G protein-coupled receptor (GPCR), and stimulates GI motility. To our knowledge, MTLR is the first GPCR reported to be activated by macrolide antibiotics, such as erythromycin. It has attracted extensive attention as a potential drug target for GI disorders. We report two structures of Gq-coupled human MTLR bound to motilin and erythromycin. Our structures reveal the recognition mechanism of both ligands and explain the specificity of motilin and ghrelin, a related gut peptide hormone, for their respective receptors. These structures also provide the basis for understanding the different recognition modes of erythromycin by MTLR and ribosome. These findings provide a framework for understanding the physiological regulation of MTLR and guiding drug design targeting MTLR for the treatment of GI motility disorders.


Asunto(s)
Motilina , Receptores de la Hormona Gastrointestinal , Humanos , Motilina/metabolismo , Eritromicina/farmacología , Eritromicina/metabolismo , Receptores de la Hormona Gastrointestinal/química , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores de Neuropéptido/metabolismo
6.
Nat Commun ; 14(1): 2668, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160891

RESUMEN

Prostaglandin F2α (PGF2α), an endogenous arachidonic acid metabolite, regulates diverse physiological functions in many tissues and cell types through binding and activation of a G-protein-coupled receptor (GPCR), the PGF2α receptor (FP), which also is the primary therapeutic target for glaucoma and several other diseases. Here, we report cryo-electron microscopy (cryo-EM) structures of the human FP bound to endogenous ligand PGF2α and anti-glaucoma drugs LTPA and TFPA at global resolutions of 2.67 Å, 2.78 Å, and 3.14 Å. These structures reveal distinct features of FP within the lipid receptor family in terms of ligand binding selectivity, its receptor activation, and G protein coupling mechanisms, including activation in the absence of canonical PIF and ERY motifs and Gq coupling through direct interactions with receptor transmembrane helix 1 and intracellular loop 1. Together with mutagenesis and functional studies, our structures reveal mechanisms of ligand recognition, receptor activation, and G protein coupling by FP, which could facilitate rational design of FP-targeting drugs.


Asunto(s)
Proteínas de Unión al GTP , Prostaglandinas , Humanos , Microscopía por Crioelectrón , Ligandos , Ácido Araquidónico
7.
Nat Commun ; 14(1): 5004, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591889

RESUMEN

MRGPRX1, a Mas-related GPCR (MRGPR), is a key receptor for itch perception and targeting MRGPRX1 may have potential to treat both chronic itch and pain. Here we report cryo-EM structures of the MRGPRX1-Gi1 and MRGPRX1-Gq trimers in complex with two peptide ligands, BAM8-22 and CNF-Tx2. These structures reveal a shallow orthosteric pocket and its conformational plasticity for sensing multiple different peptidic itch allergens. Distinct from MRGPRX2, MRGPRX1 contains a unique pocket feature at the extracellular ends of TM3 and TM4 to accommodate the peptide C-terminal "RF/RY" motif, which could serve as key mechanisms for peptidic allergen recognition. Below the ligand binding pocket, the G6.48XP6.50F6.51G6.52X(2)F/W6.55 motif is essential for the inward tilting of the upper end of TM6 to induce receptor activation. Moreover, structural features inside the ligand pocket and on the cytoplasmic side of MRGPRX1 are identified as key elements for both Gi and Gq signaling. Collectively, our studies provide structural insights into understanding itch sensation, MRGPRX1 activation, and downstream G protein signaling.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Humanos , Citoplasma , Citosol , Ligandos , Prurito
8.
Nat Commun ; 13(1): 2045, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440625

RESUMEN

Neuromedin U receptors (NMURs), including NMUR1 and NMUR2, are a group of Gq/11-coupled G protein-coupled receptors (GPCRs). NMUR1 and NMUR2 play distinct, pleiotropic physiological functions in peripheral tissues and in the central nervous system (CNS), respectively, according to their distinct tissue distributions. These receptors are stimulated by two endogenous neuropeptides, neuromedin U and S (NMU and NMS) with similar binding affinities. NMURs have gathered attention as potential drug targets for obesity and inflammatory disorders. Specifically, selective agonists for NMUR2 in peripheral tissue show promising long-term anti-obesity effects with fewer CNS-related side effects. However, the mechanisms of peptide binding specificity and receptor activation remain elusive. Here, we report four cryo-electron microscopy structures of Gq chimera-coupled NMUR1 and NMUR2 in complexes with NMU and NMS. These structures reveal the conserved overall peptide-binding mode and the mechanism of peptide selectivity for specific NMURs, as well as the common activation mechanism of the NMUR subfamily. Together, these findings provide insights into the molecular basis of the peptide recognition and offer an opportunity for the design of the selective drugs targeting NMURs.


Asunto(s)
Obesidad , Receptores de Neurotransmisores , Sistema Nervioso Central/metabolismo , Microscopía por Crioelectrón , Humanos , Obesidad/tratamiento farmacológico , Receptores de Neurotransmisores/metabolismo
9.
Int J Biol Macromol ; 130: 755-764, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30851320

RESUMEN

Heparosan polysaccharide, known as a heparin precursor, can be used in drug delivery systems due to its good biocompatibility and anti-cancer effect. But few studies on the cellular uptake mechanism of heparosan polysaccharide-based nanocarrier have been investigated. Therefore, the intracellular trafficking and the uptake mechanism of heparosan-based micelles by different tumor cells were investigated in this study. Heparosan-cholesterol amphipathic conjugates (KC) were constructed and doxorubicin (DOX) was loaded to prepare DOX/KC micelles. Different cancer cells were selected to find out the influence on DOX/KC uptake. There was an obvious difference in cytotoxicity and cellular uptake of DOX/KC in various cancer cells. Interestingly, DOX/KC micelles exhibited the strongest cytotoxicity against MGC80-3 cells and displayed highly cellular uptake by B16 cells. The results of the uptake mechanism showed that the internalization of DOX/KC micelles into MGC80-3 cells and A549 cells was mainly through clathrin-mediated endocytosis and macropinocytosis, while micropinocytosis, clathrin-mediated endocytosis and clathrin/caveolae -independent multi-pathways all contributed to the uptake of micelles in B16 cells. Furthermore, after being internalized by MGC80-3 cells, DOX/KC could escape from the lysosome and simultaneously be transported into the nucleus and mitochondria resulting in the greatest cytotoxicity. These results indicate that heparosan-based drug delivery systems may have different uptake and subcellular distribution behavior in tumor cells, and they will achieve the maximum efficacy only in specific kind of cancers.


Asunto(s)
Disacáridos/metabolismo , Portadores de Fármacos , Micelas , Neoplasias/metabolismo , Animales , Transporte Biológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Liberación de Fármacos , Estabilidad de Medicamentos , Endocitosis , Citometría de Flujo , Humanos , Espacio Intracelular/metabolismo , Ratones , Polisacáridos , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA